Rapeseed stubble as resource for bioenergy and biorefineries. Effect of genotype and cultivation conditions on chaff and stalk biomass and quality

Diego Wassner, María B. Gagliardi Reolon, Nora V. Gómez, César G. López, Deborah P. Rondanini


The abundance and low price of the residual biomass of extensive crops makes them an attractive raw material for bioenergy and biorefineries. Residual biomass (stubble) is made up of biomass from different organs and may differ in its chemical composition. In rapeseed, the stubble is made up of the stalks and the pericarp of the siliques (chaff) and their characteristics have not been analyzed separately up to the present. Thus, it is impossible to determine the
possible best uses for each fraction of the stubble based on its composition. This work aims to evaluate the quantity and composition of stalks and chaff biomass of 13 rapeseed genotypes in a variety of growing conditions, to test the following hypotheses: 1) the amount of stubble biomass per area is higly variable and cannot be estimated from grain yield, 2) the stubble-to-grain and the chaff-to-stalk ratios change with genotype and growth conditions, 3) the chemical composition of chaff and stalk is different, which justifies a separate use. The stubble biomass was between 2-6 t ha-1 according to genotype and cultivation conditions. The chaff-stalk ratio was not stable and ranged from 0.8-2.2. The stalk biomass is better to produce energy, due to its high caloric power (17-18 MJ kg-1) and low ash content (6%), while chaff have less cellulose (<38%) and lignin (<13%) and have a higher ash content (5-14%), being more suitable for biorefinery use. We concluded that the rapeseed stubble biomass is high enough to consider its economic use, and it is recommended to consider the stalk and chaff separately. The differences found among genotypes provide elements to choose materials considering the use of the residual biomass for bioenergy or biorefinery.

Palabras clave

canola; ash content; lignocellulosic biomass; bioenergy; biorefinery 

Texto completo:

PDF (English)


Álvarez, R. (2005). A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 21, 38–52. doi: 10.1111/j.1475-2743.2005.tb00105.x

Anwar, Z., Gulfraz, M. y Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7, 163-173. doi: 10.1016/j.jrras.2014.02.003

Barana, D., Salanti, A., Orlandi, M., Ali, D.S. y Zoia, L. (2016). Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind. Crops Prod. 86, 31–39. doi: 10.1016/j.indcrop.2016.03.029

Bellarby, J., Wattenbach, M., Tuck, G., Glendining, M.J. y Smith, P. (2010). The potential distribution of bioenergy crops in the UK under present and future climate. Biomass Bioenergy 34, 1935–1945. doi: 10.1016/j.biombioe.2010.08.009

Bergonzoli, S., Suardi, A., Rezaie, N., Alfano, V. y Pari, L. (2020). An innovative system for maize cob and wheat chaff harvesting: simultaneous grain and residues collection. Energies 13, 1265. doi: 10.3390/en13051265.

Blanco-Canqui, H. (2013). Crop residue removal for bioenergy reduces soil carbon pools: how can we offset carbon losses? Bioenerg. Res. 6, 358-371. doi: 10.1007/s12155-012-9221-3

Budzynski, W.S., Jankowski, K.J. y Jarocki, M. (2015). An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 90, 1272–1279. doi: 10.1016/j.energy.2015.06.087

Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230. doi: 10.1016/j.pecs.2003.10.004

Deng, Y.Y., Koper, M., Haigh, M. y Dornburg, V. (2015). Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy 74, 253–267. doi: 10.1016/j.biombioe.2014.12.003

Di Rienzo, J.A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. y Robledo, C. (2013). Infostat. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar/ (accessed 20.05.20)

Ericsson, K., Rosenqvist, H. y Nilsson, L.J. (2009). Energy crop production costs in the EU. Biomass Bioenergy 33, 1577–1586. doi: 10.1016/j.biombioe.2009.08.002

Franzaring, J., Holz, I., Kauf, Z. and Fangmeier, A. (2015). Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO 2 fertilization at different temperatures and water supply. Biomass and Bioenergy 81, 574–583. doi:10.1016/j.biombioe.2015.07.031

Friedl, A., Padouvas, E., Rotter, H. y Varmuza, K. (2005). Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191–198. doi: 10.1016/j.aca.2005.01.041

Frölander, A. y Rødsrud, G. (2011). Conversion of cellulose, hemicellulose and lignin into platform molecules: biotechnological approach. http://www.eurobioref.org/ (accessed 20.05.20)

Haile T.A., Gulden R.H. y Shirtliffe S.J. (2014). On-farm seed loss does not differ between windrowed and direct-harvested canola. Can. J. Plant Sci. 94, 785-789. doi: 10.4141/cjps2013-344

Ho, D.P., Ngo, H.H. y Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresour. Technol. 169, 742–749. doi: 10.1016/j.biortech.2014.07.022

Irvine, B. y Lafond, G.P. (2010). Pushing canola instead of windrowing can be a viable alternative. Can. J. Plant Sci. 90, 145-152. doi: 10.4141/CJPS08180

Jenkins, B., Baxter, L., Miles, T. y Miles, T. (1998). Combustion properties of biomass. Fuel Process. Technol. 54, 17–46. doi: 10.1016/S0378-3820(97)00059-3

Kashaninejad, M. y Tabil, L.G. (2011). Physicochemical characteristics of densified untreated and microwave pretreated canola straw grind, in: Canadian Society for Bioengineering 2011 Annual Conference. Winnipeg, Manitoba, 11 p. Retrieved from https://pdfs.semanticscholar.org/c615/2e36622912cb51d6ad96390e032fa0a854e5.pdf

Kim, S. y Dale, B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26, 361-375. doi: 10.1016/j.biombioe.2003.08.002

Koçar, G. y Civas, N. (2013). An overview of biofuels from energy crops: current status and future prospects. Renew. Sustain. Energy Rev. 28, 900–916. doi: 10.1016/j.rser.2013.08.022

Lehtikangas, P. (2001). Quality properties of pelletized sawdust, logging residues and bark. Biomass Bioenergy 20, 351–360. doi: 10.1016/S0961-9534(00)00092-1

Lemus, R., Brummer, E.C., Moore, K.J., Molstad, N.E., Burras, C.L. y Barker, M.F. (2002). Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23: 433-442. doi: 10.1016/S0961-9534(02)00073-9

Liang, M., Wang, G., Liang, W., Shi, P., Dang, J., Sui, P. y Hu, C. (2015). Yield and quality of maize stover: variation among cultivars and effects of N fertilization. J. Integr. Agric. 14, 1581–1587. doi: 10.1016/S2095-3119(15)61077-2

Mani, S., Tabil, L.G. y Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27, 339–352. doi: 10.1016/j.biombioe.2004.03.007

Mazhari Mousavi, S.M., Hosseini, S.Z., Resalati, H., Mahdavi, S. y Rasooly Garmaroody, E. (2013). Papermaking potential of rapeseed straw, a new agricultural-based fiber source. J. Clean. Prod. 52, 420–424. doi: 10.1016/j.jclepro.2013.02.016

McClellan, R.C., McCool, D.K. y Rickman, R.W. (2012). Grain yield and biomass relationship for crops in the Inland Pacific Northwest United States. J. Soil Water Conserv. 67, 42-50. doi: 10.2489/jswc.67.1.42

McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46. doi: 10.1016/s0960-8524(01)00118-3

Mithra, M.G., Jeeva, M.L., Sajeev, M.S. y Padmaja, G. (2018). Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon 4, E00885. doi: 10106/j.heliyon.2018.e00885

Monti, A., Di Virgilio, N. y Venturi, G. (2008). Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32, 216–223. doi: 10.1016/j.biombioe.2007.09.012

Nechyporchuk, O., Naceur Belgacem M. y Bras J. (2016). Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2-15. doi: 10.1016/j.indcrop.2016.02.016

Özdenkçi, K., De Blasio, C., Muddassar, H R., Melin, K., Oinas, P., Koskinen, J., Sarwar, G. y Järvinen, M., (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers. Manag. 149, 974-987. doi: 10.1016/j.enconman.2017.04.034

Piergentili, B. (2016). Evaluación de genotipos de colza primaveral en fechas de siembra tardías. Trabajo de intensificación para optar al título de Ingeniero Agrónomo, Facultad de Agronomía, Universidad de Buenos Aires.Gómez,

Nora Valentina (dir.), 57 pp. http://ri.agro.uba.ar/files/intranet/intensificacion/2016piergentilibruno.pdf.

Repić, B.S., Dakić, D. V., Erić, A.M., Djurović, D.M., Marinković, A.D. y Nemoda, S.D. (2013). Investigation of the cigar burner combustion system for baled biomass. Biomass Bioenergy 58, 10–19. doi: 10.1016/j.biombioe.2013.10.016

Roberts, J.J., Cassula, A.M., Osvaldo Prado, P., Dias, R.A. y Balestieri, J.A.P. (2015). Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 41, 568–583. doi: 10.1016/j.rser.2014.08.066

Rocha, J.R.A.S.C., Machado, J.C., Souza Carneiro, P.C., Costa Carneiro, J., Vilele Resende, M.D., Silva Lédo, F.J. y Souza Carneiro, J.E. (2017). Bioenergetic potential and genetic diversity of elephant grass via morpho-agronomic and biomass quality traits. Ind. Crops Prod. 95, 485-492. doi: 10.1016/j.indcrop.2016.10.060

Rondanini, D.P., Menendez, Y.C., Gomez, N.V., Miralles, D.J., y Botto, J.F. (2017). Vegetative plasticity and floral branching compensate low plant density in modern spring rapeseed. Field Crops Research 210, 104–113. doi:10.1016/j.fcr.2017.05.021

Rondanini, D.P., Gomez, N. V., Agosti, M.B. y Miralles, D.J. (2012). Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. Eur. J. Agron. 37, 56–65. doi: 10.1016/j.eja.2011.10.005

Rutz, D. y Janssen, R. (2007). Biofuel Technology Handbook, vol. 1. WIP Renewable Energies. München, Germany. 149 p. Retrieved from https://www.researchgate.net/publication/228735855_Biofuel_technology_handbook

Scott, T.A. y Melvin, E. (1953). Determination of dextran with anthrone. Anal. Chem. 25, 1656–1661. doi: 10.1021/ac60083a023

Shyam, M. (2002). Agro-residue-based renewable energy technologies for rural development. Energy Sustain. Dev. 6, 37–42. doi: 10.1016/S0973-0826(08)60311-7

Soon, Y. y Arshad, M. (2002). Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biol. Fertil. Soils 36, 10–17. doi: 10.1007/s00374-002-0518-9

Svärd, A., Brännvall, E. y Edlund, U. (2015). Rapeseed straw as a renewable source of hemicelluloses: extraction, characterization and film formation. Carbohydr. Polym. 133, 179–186. doi: 10.1016/j.carbpol.2015.07.023

van der Weijde, T., Dolstra, O., Visser, R.G.F. y Trindade, L.M. (2017). Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments. Front. Plant Sci. 7, 176-190. doi: 10.3389/fpls.2016.02004

van Soest, P.J., Robertson, J.B. y Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysacchararides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Vávrová, K., Knápek, J. y Weger, J. (2014). Modeling of biomass potential from agricultural land for energy utilization using high resolution spatial data with regard to food security scenarios. Renew.

Sustain. Energy Rev. 35, 436–444. doi: 10.1016/j.rser.2014.04.008

Wienhold, B.J. y Gilley, J.E. (2010). Cob removal effect on sediment and runoff nutrient loss from a silt loam soil. Agron. J. 102, 1448–1452. doi: 10.2134/agronj2010.0202

Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A. y Singh, S. (2014). Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197. doi: 10.1016/j.jenvman.2014.08.003

Wright, L. (2006). Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenergy 30, 706–714. doi: 10.1016/j.biombioe.2005.08.008

Wu, Z., Hao, H., Zahoor, Tu, Y., Hu, Z., Wei, F., Liu, Y., Zhou, Y., Wang, Y., Xie, G., Gao, C., Cai, X., Peng, L. y Wang, L. (2014). Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass Bioenergy 70, 347–355. doi: 10.1016/j.biombioe.2014.08.025

Zabaniotou, A., Ioannidou, O. y Skoulou, V. (2008). Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel 87, 1492–1502. doi: 10.1016/j.fuel.2007.09.003

Enlaces refback

  • No hay ningún enlace refback.

Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Agronomía&Ambiente. Revista de la Facultad de Agronomía (UBA)

ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)

Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar