Inundación de un monte frutal de durazneros: respuestas fisiológicas y de crecimiento
Resumen
El duraznero [Prunus persica (L.) Batsch] es una especie frutal que no tolera inundaciones. Aunque la inundación es un factor de estrés que afecta a montes frutales, la mayor parte de los antecedentes se circunscriben a sus efectos sobre plantas menores a dos años de edad, principalmente portainjertos. El objetivo de este trabajo fue evaluar los efectos de una inundación sobre las respuestas fisiológicas y de crecimiento de árboles adultos de durazneros cv. Red Globe. Los tratamientos fueron: (i) testigo y (ii) inundación durante 32 días, durante el período de crecimiento de los frutos. La concentración de clorofila, el potencial hídrico, la conductancia estomática y la fotosíntesis neta de las hojas fueron afectadas negativamente por la inundación del suelo. Sin embargo, la concentración interna de CO2 fue similar en ambos tratamientos, lo cual indica que factores estomáticos y no estomáticos incidieron sobre la fotosíntesis. El crecimiento en longitud y diámetro de los brotes, el peso fresco y el peso seco de las hojas y el área foliar fueron significativamente menores en el tratamiento de inundación respecto al testigo. Las respuestas de crecimiento estarían relacionadas directamente con la afectación por la inundación del metabolismo del carbono y del potencial hídrico a través de su componente de presión. El significado agronómico de las respuestas fisiológicas y de crecimiento del duraznero a la inundación, evaluadas en este trabajo, es que podrían incidir sobre el rendimiento o “performance” productiva del monte frutal de esta especie.
Palabras clave
Texto completo:
PDFReferencias
Andersen, P. C., Lombard, P. B. y Westwood, M. N. (1984). Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions. Journal of American Society for Horticultural Science, 109(2), 132-138. https://doi.org/10.21273/JASHS.109.2.132
Arbona, V., López-Climent, M.F., Pérez-Clemente, R.M., Gómez-Cadenas, A. (2009). Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environmental and Experimental Botany, 66(1), 135-142. Doi: https://doi.org/10.1016/j.envexpbot.2008.12.011.
Arjona-López, J.M., Aparicio-Durán, L., Gmitter, F.G., Jr., Romero-Rodríguez, E., Grosser, J.W., Hervalejo, A., Arenas-Arenas, F.J. (2023). Physiological Influence of Water Stress Conditions on Novel HLB-Tolerant Citrus Rootstocks. Agronomy, 13, 63. Doi: https://doi.org/10.3390/agronomy13010063
Armstrong, W., y Drew, M.C. (2002). Root growth and metabolism under oxygen deficiency. En Y. Waisel, A. Eshel, T. Beeckman, y U. Kafkafi (Eds.), Plant Roots: The Hidden Half, (pp. 729-761). Boca Raton, FL.
Aroca, R., Porcel, R., y Ruiz-Lozano, J. M. (2011). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63, 43-57. Doi: https://doi.org/10.1093/jxb/err266
Atkinson, C. J., Harrison-Murray, R. S. Taylor, J. M. (2008). Rapid-flood-induced stomatal closure accompanies xylem sap transportation of root-derived acetaldehyde and ethanol in Forsythia. Environmental and Experimental Botany, 64(2), 196-205. https://doi.org/10.1016/j.envexpbot.2008.02.001
Bailey-Serres, J. y Voesenek, L. A. (2008). Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313-339. https://doi.org/10.1146/annurev.arplant.59.032607.092752
Beckman, C., Perry R. L., Flore J. A. (1992). Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. Hortscience, 27(12), 1297-1301. https://doi.org/10.21273/HORTSCI.27.12.1297
Bhatt, R.M., Upreti, K.K., Divya, M.H., Bhat, S., Pavithra, C.B., Sadashiva, A.T. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. Doi: https://doi.org/10.1016/j.scienta.2014.10.043.
Chalmers, D. J. y van den Ende, B. (1975). A reappraisal of the growth and development of peach fruit. Australian Journal of Plant Physiology, 2(4), 623-634. https://doi.org/10.1071/PP9750623
Crane, J. H. y Davies F. S. (1989). Flooding responses of Vaccinium species. Hortscience, 24(2), 203-210. https://doi.org/10.21273/hortsci.24.2.203
Davies, F. S. y Flore, J. A. (1986). Flooding, gas exchange and hydraulic conductivity of highbush blueberry. Physiologia Plantarum, 67(4), 545-551. https://doi.org/10.1111/j.1399-3054.1986.tb05053.x
De Pedro, L.F., Mignolli, F., Scartazza, A., Melana Colavita, J.P., Bouzo, C.A. Vidoz, M.L. (2020). Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. Physiologia Plantarum, 170, 202-217. Doi: https://doi.org/10.1111/ppl.13141
DeJong, T. M. (1986). Fruit effects on photosynthesis in Prunus persica. Physiologia Plantarum, 66(1), 149-153. https://doi.org/10.1111/j.1399-3054.1986.tb01248.x
DeJong, T. M. y Goudriaan, J. (1989). Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double sigmoid growth pattern. Journal of the American Society for Horticultural Science, 114(5), 800-804. https://doi.org/10.21273/JASHS.114.5.800
Domingo, R., Pérez-Pastor, A., Ruiz-Sánchez, M.C. (2002). Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions. Journal of Plant Physiology, 159, 725-732. Doi: https://doi.org/10.1078/0176-1617-0670
Else, M.A. Janowiak, F., Atkinson, C.J., Jackson, M.B. (2009). Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Annals of Botany, 103(2), 313–323. Doi: https://doi.org/10.1093/aob/mcn208
Else, M.A., Coupland, D., Dutton, L., Jackson, M.B. (2001). Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiologia Plantarum, 111, 46-54. Doi: https://doi.org/10.1034/j.1399-3054.2001.1110107.x
Farquhar, G. D. y Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
Gardiner, E. S. y Krauss, K. W. (2001). Photosynthetic light response of flooded cherry bark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology, 21, 1103-1111. https://doi.org/10.1093/treephys/21.15.1103
Gill, C.J. (1970). The flooding tolerance of woody species-a review. Forestry Abstracts, 31(4), 671-688.
Gimeno, V., Syvertsen, J.P., Simon, I., Martinez, V., Camara-Zapata, J.M., Nieves, M., Garcia-Sanchez, F. (2012). Interstock of ‘Valencia’ Orange Affects the Flooding Tolerance in ‘Verna’ Lemon Trees, HortScience, 47(3), 403-409. Doi: https://doi.org/10.21273/HORTSCI.47.3.403
Gimeno, V., Syvertsen, J.P., Simón, I., Nieves, M., Díaz-López, L., Martínez, V., García-Sánchez, F. (2012). Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany 78, 47-55. Doi: https://doi.org/10.1016/j.envexpbot.2011.12.014.
Gravatt, D. A. y Kirby, C. J. (1998). Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology, 18(6), 411-417. https://doi.org/10.1093/treephys/18.6.411
Grichko, V.P. y Glick, B.R. (2001). Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11-17. Doi: https://doi.org/10.1016/S0981-9428(00)01212-2.
Hamilton, S.K., Sippel, S.J., Melack, J.M. (1995). Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30, 115–141. Doi: https://doi.org/10.1007/BF00002727
Hamilton, S.K., Sippel, S.J., C.D.F, Melack, John, M. (1997). An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnology and Oceanography, 42, 257–272. Doi: https://doi.org/10.4319/lo.1997.42.2.0257.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816- 821. Doi: https://doi.org/10.1038/nclimate1911
Holzapfel, E. A., Pannunzio, A., Lorite, I., Oliveira, A. y Farkas, I. (2009). Design and management of irrigation systems. Chilean Journal of Agricultural Research, 69(1), 16-25. http://dx.doi.org/10.4067/S0718-58392009000500003.
Horchani, F., Gallusci, P., Baldet, P., Cabasson, C., Maucourt, M., Rolin, D., Aschi-Smiti, S., Raymond, P. (2008). Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. Journal of Plant Physiology, 165(13), 1352-1359. Doi: https://doi.org/10.1016/j.jplph.2007.10.016.
Horchani, F., Stammitti-Bert, L., Baldet, P., Brouquisse, R., Rolin, D., Aschi-Smiti, S., Raymond, P., Gallusci, P. (2010). Effect of prolonged root hypoxia on the antioxidant content of tomato fruit. Plant Science, 179(3), 209-218. Doi: https://doi.org/10.1016/j.plantsci.2010.05.003.
Iacona, C., Cirilli, M., Zega, A., Frioni, E., Silvestri, C., Muleo, R. (2013). A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled conditions. Scientia Horticulturae, 156, 1-8, Doi: https://doi.org/10.1016/j.scienta.2013.03.014.
Iglesias, D. J., Lliso, I., Tadeo, F. y Talon, M. (2002). Regulation of photosynthesis through source: Sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum, 116(4), 563-572. https://doi.org/10.1034/j.1399-3054.2002.1160416.x
Insausti, P. y Gorjón, S. (2013). Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. Scientia Horticulturae, 152, 56-60. https://doi.org/10.1016/j.scienta.2013.01.005
Intergovernmental Panel on Climate Change-IPCC. (2019). Global warming of 1.5°C. Summary for Policy Makers. Switzerland: World Meteorological Organization, United Nations Environment Program, and Intergovernmental Panel on Climate Change. Bern.
Jackson, M. B. y Drew, M. (1984). Effects of flooding on growth and metabolism of herbaceous plants. En: Kozlowski, T. T. (Ed.). Flooding and plant growth (pp. 47-128). Academic Press Inc.
Jackson, M.B., Davies, W.J., Else, M.A. (1996). Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Annals of Botany, 77, 17-24. Doi: https://doi.org/10.1006/anbo.1996.0003
Kozlowski, T.T. (1997). Responses of woody plants to flooding and salinity. Tree Physiology, 1.
Kreuzwieser, J. y Rennenberg, H. (2014). Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environment, 37, 2245-2259. Doi: https://doi.org/10.1111/pce.12310
Larson, K. D., Davies, F. S., Schaffer, B. 1991. Floodwater temperature and stem lenticel hypertrophy in Mangifera indica (Anacardiaceae). American Journal of Botany, 78, 1397-1403. https://doi.org/10.2307/2445278
Larson, K. D., Schaffer, B. y Davies, F. S. (1989). Flooding, carbon assimilation and growth of mango trees. Pp. 126. American Society for Horticultural Science, Annual Meeting, Tulsa, OK, Prog. and Abstracts, Alexandria, VA.
Lavinsky, A., De Souza Sant’Ana, C., Mielke, M. y Furtado de Almeida, A. (2007). Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings. New Forests, 34, 41-50. https://doi.org/10.1007/s11056-006-9036-1
Letey, J. y Stolzy, L. H. (1964). Measurement of oxygen diffusion rates with a platinum microelectrode I. Theory and equipment. Hilgardia, 35, 54-55.
Martinazzo, E. G., Perboni, A. T., Farias, M. E., Bianchi, V. J. y Bacarin, M. A. (2011). Photosynthetic activity in the rootstock of hybrid peach trees submitted to water restriction and flooding. Brazilian Journal of Plant Physiology, 23, 231-236. https://doi.org/10.1590/S1677-04202011000300007
McGee, T., Shahid, M.A., Beckman, T.G., Chaparro, J.X., Schaffer, B., Sarkhosh, A. (2021). Physiological and biochemical characterization of six Prunus rootstocks in response to flooding. Environmental and Experimental Botany, 183, 104368. Doi: https://doi.org/10.1016/j.envexpbot.2020.104368.
Megonigal, J.P., Faulkner, S.P. Patrick, W.H. (1996). The Microbial Activity Season in Southeastern Hydric Soils. Soil Science Society of America Journal, 60, 12631266. Doi: https://doi.org/10.2136/sssaj1996.03615995006000040043x.
Mielke, M.S., de Almeida, A.F., Gomes, F.P., Aguilar, M.A., Mangabeira, P.A. (2003). Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany, 50(3), 221-231. Doi: https://doi.org/10.1016/S0098-8472(03)00036-4.
Motschenbacher, J.M., Brye, K.R., Anders, M.M. (2015). Daily soil surface CO2 flux during non-flooded periods in flood-irrigated rice rotations. Agronomy for Sustainable Development, 35, 771-782. Doi: https://doi.org/10.1007/s13593-014-0278-6
Muleo, R., Iacona, C., Pistelli, L., Loreti, F. (2006). A novel Mr.S.2/5 peach rootstock clone tolerant to flooding stress. Advances in Horticultural Science, 20(3), 208–214.
Nicolás, E., Torrecillas, A., Dell’Amico, J., Alarcón, J.J. (2004). The effect of short-term flooding on the sap flow, gas exchange and hydraulic conductivity of young apricot trees. Trees, 19, 51-57. Doi: https://doi.org/10.1007/s00468-004-0362-7
Olmo-Vega, A., García-Sánchez, F., Simón-Grao, S., Simón, I., Lidón, V., Nieves, Martínez-Nicolás, M. (2017). Physiological responses of three pomegranate cultivars under flooded conditions. Scientia Horticulturae, 224, 171-179. Doi: https://doi.org/10.1016/j.scienta.2017.06.013
Parent, C., Capelli, N., Berge, A., Crevecoeur, M. y Dat, J. F. (2008). An overview of plant responses to soil waterlogging. Plant Stress, 2, 20-27.
Pezeshki, S. R. y Chambers, J. L. (1985). Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding. Canadian Journal of Forest Research, 15, 371-375. https://doi.org/10.1139/x85-059
Pezeshki, S. R. y DeLaune, R. D. (1998). Responses of seedling of selected woody species to soil oxidation-reduction conditions. Environmental and Experimental Botany, 40, 123-133. https://doi.org/10.1016/S0098-8472(98)00026-4
Pistelli, L., Iacona, C., Miano, D., Mensuali-Sodi, A., Muleo, R. (2012). A Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging. Tree Physiology, 32(3), 355–368. Doi: https://doi.org/10.1093/treephys/tpr135
Ponnamperuma, F. N. (1972). Chemistry of submerged soils. Advances in Agronomy, 24, 29-95. https://doi.org/10.1016/S0065-2113(08)60633-1
Sanclemente, M.A., Schaffer, B., Gil, P.M., Davies, F.S., Crane, J.H. (2013) Leaf removal before flooding influences recovery of avocado (Persea americana Mill.) trees from flooding stress. Scientia Horticulturae, 150, 154-163. Doi: https://doi.org/10.1016/j.scienta.2012.11.002.
Sanclemente, M.A., Schaffer, B., Gil, P.M., Vargas, A.I., Davies, F.S. (2014). Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees, Scientia Horticulturae, 169, 27-35. Doi: https://doi.org/10.1016/j.scienta.2014.01.034.
Save, R. y Serrano, L. (1986). Some physiological and growth responses of kiwi fruit (Actinidia chinensis) to flooding. Physiologia Plantarum, 66, 75-78. Doi: https://doi.org/10.1111/j.1399-3054.1986.tb01236.x
Seo, D.C. y DeLaune, R.D. (2010). Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Science of The Total Environment, 408(17), 3623-3631. Doi: https://doi.org/10.1016/j.scitotenv.2010.04.043.
Siebel, H.N. y Blom, C.W. (1998). Effects of irregular flooding on the establishment of tree species. Acta Botanica Neerlandica, 47(2), 231-240.
Smit, B., Stachowiak, M., Van Volkenburgh, E. (1989). Cellular Processes Limiting Leaf Growth in Plants under Hypoxic Root Stress, Journal of Experimental Botany, 40(1), 89-94. Doi: https://doi.org/10.1093/jxb/40.1.89
Striker, G. G., Insausti, P., Grimoldi, A. A. y Vega, A. S. (2007). Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant, Cell and Environment, 30(5), 580-589. https://doi.org/10.1111/j.1365-3040.2007.01639.x
Sullivan, M., Vantoai, T., Fausey, N.R., Beuerlein, J., Parkinson, R., Soboyejo, A. (2001). Evaluating On-Farm Flooding Impacts on Soybean. Crop Science, 41, 93-100. Doi: https://doi.org/10.2135/cropsci2001.41193x
Tournaire-Roux, C., Sutka, M., Javot, H., (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425, 393-397. Doi: https://doi.org/10.1038/nature01853
Voesenek L. A. y Bailey-Serres, J. (2015). Flood adaptive traits and processes: an overview. New Phytol., 206, 57-73. https://doi.org/10.1111/nph.13209
Wiström, B., Emilsson, T., Sjöman, H., Levinsson, A. (2023). Experimental evaluation of waterlogging and drought tolerance of essential Prunus species in central Europe. Forest Ecology and Management, Volume 537, 120904. Doi: https://doi.org/10.1016/j.foreco.2023.120904.
Zhang, B., Sun, M., Liu, W., Lian, M., Yang, S., Peng, F., Xiao, Y. (2023). Waterlogging resistance and evaluation of physiological mechanism of three peach (Prunus persica) rootstocks. Protoplasma, en prensa. Doi: https://doi.org/10.1007/s00709-023-01850-w
Ziegler, V. H., Ploschuk, E., Weibel, A. M. y Insausti, P. (2017). Short-term responses to flooding stress of three Prunus rootstocks. Scientia Horticulturae, 224, 135-141. https://doi.org/10.1016/j.scienta.2017.06.009
Ziegler, V. H., Weibel, A. M. y Insausti, P. (2023). Effect of two flooding levels on growth and physiological parameters in peach rootstock ‘Nemared’. Revista Chapingo Serie Horticultura, 29(2), 21-31. https://doi.org/10.5154/r.rchsh.2022.09.012
DOI: http://dx.doi.org/10.62165%2FAA.44.1.0265
Enlaces refback
- No hay ningún enlace refback.
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .
ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)
Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar