Parámetros biológicos y niveles de glomalina como indicadores de calidad de un suelo implantado con especies forestales exóticas en la Patagonia argentina
Resumen
Palabras clave
Texto completo:
PDFReferencias
Anderson, J.P.E. 1982. Soil respiration. In: Methods of Soil Analisis. Agronomy. ASA y SSSA. Madison, Wisconsin, USA. Page A L et al. (eds). pp 841-845.
Aon, M. y A. Colaneri. 2001. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. App. Soil Ecol., 18: 255-270.
Bedini, S.; L. Avio; E. Argese and M. Giovannetti. 2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems and Environment 120: 463-466.
Bonfim, J.; R.L.F. Vasconcellos; S.L. Stürmer and E.J.B.N. Cardoso. 2013. Arbuscular mycorrhizal fungi in the Brazilian Atlantic forest: A gradient of environmental restoration. Applied Soil. Ecology 71: 7-14.
Borie, F.R.; J.L. Rubio; A. Rouanet; A. Morales; G. Borie and C. Rojas. 2006. Effect of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil and Tillage Research 88: 253-261.
Campbell, C.; S. Grayston and D. Hirst. 1997. Use of rhyzosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods 30: 33-41.
Dick W. and M. Tabatabai. 1992. Potential uses of soil enzymes. In: Metting F. Jr (ed) Soil microbial ecology: application in agricultural and environmental management. USA. Marcel Dekker (eds) pp 95-127.
Dick, R.P.; D.P. Rakwell and R.F. Turco. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Methods for Assessing Soil Quality. SSSA Spec. Publ. 49 J. USA. Doran y A. Jones (eds). pp 247-271.
Dilly, O. and J.C. Munch. 1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnus glutinosa (L.) Gaertn) Forest. Soil Biology and Biochemistry 28: 1073-1081.
Driver, J.; W. Holben and M. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem., 37: 101-106.
Effron, D.; G. Sarti; C. Quinteros y S. Catán. 2012. Influencia de las especies Roble (Quercus robur), Fresno (Fraxinus excelsior L.) y Pino Radiata (Pinus radiata D. Don) sobre parámetros biológicos y bioquímicos en un suelo forestal de Chubut, Argentina. Revista Información Tecnológica 23(2): 87-92.
Godoy, M.M.; G.E. Defossé y N. Thren 2007. Especies forestales promisorias para la diversificación de forestaciones en la Patagonia Argentina. Bosque 22(1): 25-32.
Kuimei, Q.; W. Liping and Y. Ningning. 2012. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology 22: 553-557.
Lovelock, C.; S.F. Wright; D A. Clark and R.W. Ruess. 2004. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 92: 278-287.
Martin, S.L.; S. Mooney; M. Matthew; M.J. Dickinson and H M. West. 2012. Soil structural responses to alterations in soil microbiota induced by the dilution method and mycorrhizal fungal inoculation. Pedobiologia 55: 271-281.
Nannipieri, P. 1994. The potencial use of enzymes as indicators of productivity, sustainability and pollution. In: Soil biota: management in Sustainable farming System CSIRO. Press. East Melbourne CE Pankhurst, BM Doube, BB Gupta, PR Grace (eds). pp 238-244.
Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. En: Methods of Soil Analysis, Part. 2. 2da. edn. Madison, Wisconsin, USA Agronomy 9. American Society of Agronomy, A.L Page; R.H. Miller; D.R. Keeney (eds). pp 539-579.
Rillig M.; S. Wright; M. Allen and C. Field. 1999. Rise in carbon dioxide changes soil structure. Nature 400: 628.
Rillig, M.; P.W. Ramsey; S. Morris and E.A. Paul. 2003. Glomalin an arbuscular micorrhizal fungal soil protein, responds to soil use change. Plant and Soil 253: 293-299.
Rillig, M.S.; K. Wright; K. Nichols; W. Schmith and M. Torn. 2001. Large contributions of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil 233: 167-177.
Rusch, V.; and V. Lantschner 2014. Efecto de las plantaciones forestales sobre la fauna de la Patagonia Andina. Revista Forestación y Ambiente. Revista Forestoindustrial del Ministerio de Agricultura, Ganadería y Pesca. 8: 12-14.
Seguel, A.; R. Rubio; R. Carrillo; A. Espinosa y F. Borie. 2008. Niveles de glomalina y su relación con características químicas y biológicas del suelo (andisol) en un relicto de bosque nativo del sur de Chile. Bosque 29(1): 11-22.
Treseder, K. and K. Turner. 2007. Glomalin in Ecosystems. Soil Science Society American Journal, 71: 1257-1266.
Tripathi S.; A. Chakraborty; A. Chakrabarti and B. Bandyopadhyay. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39: 2840-2848.
Wang, Q.; Y. Bao; X. Liu and G. Du. 2014. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes. Mycorrhiza 24: 525-538.
Wang, A.; J. Angle; R. Chaney; T. Delarme and M. Mc Intosh, 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens hytoextraction. Soil Biology and Biochemistry 38(6): 1451-1461.
Wright, S. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycol-protein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97-107.
Enlaces refback
- No hay ningún enlace refback.
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .
ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)
Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar