Impacto de un estrés térmico pre-floración sobre el peso y la calidad de los granos de maíz (Zea mays L.) ante cambios en la relación fuente-destino post-floración

Gonzalo M. Rivelli, Robinson Andrey Navarrete Sánchez, Gustavo Angel Maddonni

Resumen


Se ha documentado variabilidad genotípica en el impacto del estrés térmico durante etapas reproductivas del maíz sobre el número, peso y calidad de los granos. Sin embargo, se desconoce el efecto del estrés térmico en pre-floración sobre el peso y la calidad cuando hay cambios en la relación fuentedestino post-floración, i.e. defoliaciones. El objetivo de este trabajo fue analizar la evolución del peso de los granos de maíz y su calidad para un híbrido tropical (H1) y sus dos líneas parentales (L1 y L2), ante un evento de estrés térmico pre-floración combinado con reducciones de la fuente de asimilados post-floración. Se realizó un experimento bajo condiciones de invernáculo que permitió manipular el régimen térmico (con y sin estrés). El estrés térmico (>35ºC) se impuso durante 15 días desde inicios de la encañazón hasta 15 días antes de antesis, mientras que el tratamiento de defoliación (reducción ~50% del área verde) se aplicó a los 15 días desde R1 (i.e. comienzo del crecimiento del grano). El estrés térmico pre-floración no generó cambios en el peso o la calidad de los granos. Como producto de la defoliación se redujo el peso de los granos, debido a una interrupción anticipada del crecimiento de los mismos, provocando modificaciones sobre su composición química, atribuibles a los cambios en el calibre de los granos. La defoliación redujo la proporción de granos de calibre >8 mm en H1 y aumentó en L1 la proporción de granos de calibre 6,5-8 mm, determinando menores concentraciones de aceite, proteína y almidón. En L2, la concentración de aceite, disminuyó por la defoliación al aumentar los granos de calibre pequeño e intermedio y disminuir los de mayor tamaño.

Palabras clave


maíz (Zea mays L.); estrés térmico; defoliación; peso de grano; calidad de grano

Texto completo:

PDF

Referencias


Andrade, F.H., Ferreiro M.A. 1996. Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Res. 48:155–165.

Badu-Apraku B., Hunter R.B., Tollenaar M. 1983. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can. J. Plant Sci. 63:357–363.

Barnabás, B., Jäger, K., Fehér, A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11–38.

Bielich, M. 2014. Efectos de un episodio de estrés térmico durante el llenado de los granos de maíz (Zea mays, L). Tesis de Grado. Facultad de Agronomía. Universidad de Buenos Aires. Argentina.

Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100, 77–83.

Blum, A., Sinmena, B., Mayer, J., Golan, G., Shpiler, L. 1994. Stem reserve mobilisation supports wheat-grain filling under heat stress. Funct. Plant Biol. 21, 771-781.

Bolaños, J., Edmeades, G.O. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in maize. Field Crops Res. 48,65-80.

Borrás, L., Otegui, M.E. 2001. Maize kernel weight response to postflowering source–sink ratio. Crop Sci. 49, 1816-1822.

Borrás, L., Curá, A.J., Otegui, M.E. 2002. Maize Kernel Composition and Post-Flowering Source-Sink Ratio. Crop Science 42, 781-790.

Borrás, L., Slafer, G.A., Otegui, M.E. 2004. Seed dry weight response to source-sink manipulations in wheat, maize and soybean. A quantitative reappraisal. Field Crops Res. 83:131-146.

Cairns, J.E., Crossa, J., Zaidi, P.H., Grudloyma, P., Sanchez, C., Araus, J.L., Thaitad, S., Makumbi, D., Magorokosho, C., Bänziger, M., Menkir, A., Hearne, S., Atlin, G.N. 2013. Identification of drought, heat, and combinated drought and heat tolerant donors in maize. Crop Sci. 53, 1335-1346.

Cicchino, M., Edreira, J. I. R., Otegui, M. E. 2010. Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Science, 50(4), 1431.

Cirilo A.G., Actis M., Andrade F.H., Valentinuz O.R. 2011. Crop management affects dry-milling quality of flint maize kernels. Field Crops Research 122:140-150.

D’Andrea K., Otegui M., Cirilo A., Eyhérabide G. 2009. Ecophysiological traits in maize hybrids and their parental inbred lines: Phenotyping of responses to contrasting nitrogen supply levels. Field Crops Res, 114:147-158

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Cuadroda, M., Robledo, C.W. 2011. InfoStat Profesional. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina.

Dreywood, R. 1946. Qualitative Test for Carbohydrate Material. Ind. & Eng. Chem. Analyt. 18, 499-499.

Echarte, L., Andrade, F.H., Sadras, V.O., Abbate, P.E. 2006. Kernel weight and its response to source manipulations during grain filling in Argentinean maize hybrids released in different decades. Field Crops Res. 96:307–312.

Fischer, T., Byerlee, D., Edmeades, G. 2014. Crop yields and global food security; Will yield increase continue to feed the world? Ed. Australian Centre for International Agricultural Research (ACIAR). 5, 183- 240.

Gambín, B.L., Borrás, L., Otegui, M.E. 2006. Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Res. 95, 316-326.

Jandel TBLCURVE. 1992. Curve Fitting Software Jandel Scientific, Corte Madera, CA.

Jones, R.J., Simmons S.R. 1983. Effect of altered source sink ratio on growth of maize kernels. Crop Sci. 23:129–134.

Lafitte H.R., Edmeades G.O., Johnson E.C. 1997. Temperature responses of tropical maize cultivars selected for broad adaptation. Field Crops Res 49, 215-229.

Loomis, R.S., Connor, D.J. 1992. Crop ecology: productivity and management in agricultural systems. Cambridge University Press 538 p.

Masagué A., Cirilo A., Andrade F. 2004. La dureza de grano de maíz (Zea mays L.) colorado duro está asociada con la relación fuente-destino postfloración. Actas XXV Reunión Argentina de Fisiología Vegetal. Santa Rosa (La Pampa), 22-24/Septiembre de 2004: 82-83

Mayer, L.I., Rossini, M.A., Maddonni, G.A. 2012. Inter-plant variation of grain yield components and kernel composition of maize crops grown under contrasting nitrogen supply. Field Crops Res. 125: 98–108.

Mayer, L.I., Rattalino Edreida, J.I., Maddonni, G. A. 2014. Oil yield components of maize crops exposed to heat stress during early and late grain-filling stages. Crop Science 54, 1-15.

Mayer, L. I., Savín, R., Maddonni, G.A. 2016. Heat Stress during Grain Filling Modified Kernel Protein Composition in Field-Grown Maize. Crop Sci. (in press).

Melchiori, R. J., Caviglia O. P. 2008. Maize kernel growth and kernel water relations as affected by nitrogen supply. Field Crops Res. 108:198-205.

NeSmith, D.S., Ritchie J.T. 1992. Maize (Zea mays L.) response to a severe soil water-deficit during grain-filling. Field Crops Res. 29:23–35.

Quattar, S., Jones R.J., Crookston R.K. 1987. Effect of water deficit during grain filling on the pattern of maize kernel growth and development. Crop Sci. 27:726–730.

Rattalino Edreira, J.I., Budakli Carpici, E., Sammarro, D., Otegui, M.E. 2011. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Res. 123, 62–73.

Rattalino Edreira, J.I., Otegui, M.E. 2012. Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crops Res. 130, 87–98.

Rattalino Edreira, J. I., Mayer, L. I., Otegui, M. E. 2014. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crops Research 166, 162-172.

Ritchie, S.W., Hanway, J.J., Benson, G.O. 1993. How a corn plant develops. Special Report 48. Iowa State University.

Sala, G. R., Westgate M. E., Andrade F. H. 2007. Source/Sink ratio and the relationship between maximum water content, maximum volume and final dry weight of maize kernel. Fields Crops Res. 101:19-25.

Serignese, A.D., Pescio, F.E. 1995 Maíz duro colorado: una alternativa interesante. SAGyP (Arg.). Serie Divulgación n°1 35p.

Slewinski, T.L. 2012. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot. 63, 4647–4670.

Tahir, I.S.A., Nakata, N. 2005. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J. Agron. Crop Sci. 191, 106–115.

Tanaka, W., Maddonni, G.A. 2009. Maize kernel oil and episodes of shading during the grain-filling period. Crop Sci. 49, 2187–2197.

Tanaka, W., Mantese, A., Maddonni, G. A. 2009. Pollen source effects on growth of kernel structures and embryo chemical compounds in Maize. Ann. of Bot. 104, 325-334.

Tollenaar, M., Daynard, T.B. 1978. Relationship between assimilate source and reproductive sink in maize grown in a short-season environment. Agron. J. 70, 219-223.

Uhart, S.A., Andrade, F.H. 1995. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Sci. 35, 183-190.

Vega, C.R.C., Andrade, F.H., Sadras, V.O., Uhart, S.A., Valentinuz, O.R. 2001. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41:748-754.

Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., Khair, A. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199-223.

Westgate, M.E. 1994. Water status and development of the maize endosperm and embryo during drought. Crop Sci. 34:76–83.

Yemm, E.W., Willis, A.J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508-514.


Enlaces refback

  • No hay ningún enlace refback.



Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Agronomía&Ambiente. Revista de la Facultad de Agronomía (UBA)

ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)

Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar