LIMITANTES AL RENDIMIENTO EN TRIGO Y CEBADA

Leonor G. Abeledo, Román A. Serrago, Romina P. de San Celedonio, Patricio J. Lo Valvo, Daniel J. Miralles

Resumen


Trigo pan y cebada cervecera son los principales cereales de invierno sembrados en Argentina, en consonancia con su relevancia a nivel mundial. Durante el último quinquenio, el rendimiento medio logrado a nivel productivo en Argentina ha sido para trigo de 2972 kg ha-1 y para cebada de 3596 kg ha-1 , un -9% y +24% respecto al rendimiento medio mundial para el mismo período en cada cultivo. Desde 1960 a la actualidad, el aumento de rendimiento logrado en Argentina presentó una tasa de 32 kg ha-1 año-1 para trigo y de 51 kg ha-1 año-1 para cebada. Alrededor de un tercio del aumento de rendimiento logrado a campo estuvo dado por el progreso genético, en ambos cultivos, pero con fuertes variaciones a lo largo de los años. Tanto en trigo como en cebada el aumento de rendimiento por progreso genético estuvo asociado a un aumento en el número de granos m-2 , sin una tendencia definida en el peso de los granos. Las deficiencias nitrogenadas, las altas temperaturas, y los eventos de anegamiento son algunos de los estreses abióticos a los que están expuestos ambos cultivos en condiciones de campo. En el presente trabajo se describe el impacto de dichos estreses sobre la definición del rendimiento en trigo y cebada, en base a resultados propios obtenidos por los autores del presente trabajo. El número de granos logrados por m2 fue el componente numérico que explicó el rendimiento independientemente de la especie y de la naturaleza del estrés. Dado que la definición del número de granos queda supeditada a la condición ambiental alrededor de antesis, el uso de modelos de simulación es una herramienta para evaluar cuándo ocurrirá dicho evento.

Palabras clave


estrés abiótico; hordeum vulgare L.; número de granos; progreso genético; Triticum aestivum L.

Texto completo:

PDF

Referencias


Abeledo, L.G.; D.F. Calderini and G.A. Slafer. 2003. Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944-1998). Euphytica 130: 325-334.

Abeledo, L.G. y D.M. Miralles. 2011. ¿Qué cambios presentaron en los últimos años los sistemas de producción de trigo y cebada en Argentina? En: Sistemas de Producción de Trigo y Cebada: Decisiones de manejo en base a conceptos ecofisiológicos para optimizar el rendimiento, la calidad y el uso de los recursos. Eds. Valle S., Lizana C., Calderini D., Universidad de Valdivia - CYTED, Valdivia, Chile. Pp. 39-54. http://www.metrice.udl.cat/es/

Alscher, R.G.; J.L. Donahue and C.L. Cramer. 1997. Reactive oxygen species and antioxidants: Relationships in green cells. Physiologia Plantarum 100: 224-233.

Alscher, R.G.; N. Erturk and L.S. Heath. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53: 1331-1341.

Alzueta, I.; S. Arisnabarreta; L.G. Abeledo and D.J. Miralles. 2014. A simple model to predict phenology in malting barley based on cultivar thermo-photoperiodic response. Computers and Electronics in Agriculture 107: 8-19.

Arisnabarreta, S. and D.J. Miralles. 2008. Critical period for grain number establishment of near isogenic lines of two- and six-rowed barley. Field Crops Research 107: 196-202.

Beed, F.D.; N.D. Paveley and R. Sylvester-Bradley. 2007. Predictability of wheat growth and yield in light-limited conditions. The Journal of Agricultural Science 145: 63-79.

Bohnert, H.J. and E. Sheveleva. 1992. Plant stress adaptations - making metabolism move. Current Opinion in Plant Biology 1: 267-274.

Borrás, L.; G.A. Slafer and M.E. Otegui. 2004. Seed dry weight response to sourcesink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Research 86: 131-146.

Bowler, C.; M.V. Montagu y D. Inze. 1992. Superoxide Dismutase and Stress Tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116.

Calderini, D.F.; M.F. Dreccer and G.A. Slafer. 1995. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and latest trends. Plant Breeding 114: 108-112.

Chalker-Scott, L. 1999. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochemistry and Photobiology 70: 1-9.

Cramer, G.R.; K. Urano; S. Delrot; M. Pezzotti y K. Shinozaki. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology 11: 163-177.

de San Celedonio, R.P.; L.G. Abeledo and D.J. Miralles. 2014. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant and Soil 378: 265-277.

Evans, L.T. and R.A. Fischer. 1999. Yield potential: its definition, measurement, and significance. Crop Science 39: 1544-1551.

FAO, 2017. FAOSTAT. www.fao.org/faostat/ Verificado febrero 2017.

Feder, M.E. and G.E. Hofmann. 1999. Heat-Shock Proteins, Molecular Chaperones, and The Stress Response: Evolutionary and Ecological Physiology. Annual Review of Physiology 61: 243-282.

Fernández-Gómez, J. and Z.A. Wilson. 2012. Non-destructive staging of barley reproductive development for molecular analysis based upon external morphology. Journal of Experimental Botany 63: 4085-4094.

Fischer, R.A. and Maurer R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29: 897-912.

Fischer, R.A. 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science 105: 447-461.

García, G.A.; M.F. Dreccer; D.J. Miralles and R.A. Serrago. 2015. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Global Change Biology 21: 4153-4164.

Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.

Giménez, F. J. 2017. Ganancia Genética en Cebada Cervecera (Hordeum vulgare L.) en Argentina durante el período 1931-2007. Tesis de Doctor en Agronomía, Universidad Nacional del Sur. http://repositoriodigital.uns.edu.ar/handle/123456789/3973. Verificado marzo 2018.

Gizzi, G. and B. L. Gambin. 2016. Eco-physiological changes in sorghum hybrids released in Argentina over the last 30 years. Field Crops Research 188: 41-49.

Handa, S.; A.K. Handa; P.M. Hasegawa; R.A. Bressan. 1986. Proline Accumulation and the Adaptation of Cultured Plant Cells to Water Stress. Plant Physiology 80: 938-945.

Hare, P.D. and W.A. Cress. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21: 79-102.

Jenner, C. and A. Rathjen. 1978. Physiological basis of genetic differences in the growth of grains of six varieties of wheat. Australian Journal Plant Physiology 5: 249 - 262

Kruk, B.C.; D.F, Calderini and G.A. Slafer. 1997. Grain weight in wheat cultivars released from 1920 to 1990 as affected by post anthesis defoliation. The Journal of Agricultural Science 128: 273-281.

Lo Valvo, P.J. 2017. Cambios en la productividad y en la respuesta a enfermedades foliares de cultivares de trigo liberados entre 1918 y 2011 en Argentina. Tesis Doctoral, Escuela para Graduados Ing. Agr. Alberto Soriano, Facultad de Agronomía, Universidad de Buenos Aires.

Lo Valvo, P.J.; D.J. Miralles and R.A. Serrago. 2018. Genetic progress in Argentine bread wheat varieties released between 1918 and 2011: Changes in physiological and numerical yield components. Field Crops Research 221: 314-321.

Lobell, D.B.; W. Schlenker and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science 333: 616-620.

Ma, Y.-Z.; C. MacKown; D. Van Sanford. 1990. Sink manipulation in wheat: Compensatory changes in kernel size. Crop Science. 30: 1099-1105.

Maurel, C.; L. Verdoucq; D.T. Luu and V. Santoni. 2008. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology 59: 595-624.

Mignone, C.M., 2006. Rendimiento comparado de trigo pan y cebada cervecera en condiciones contrastantes de disponibilidad nitrogenada. Trabajo de Intensificación para acceder al título de Ingeniero Agrónomo. Facultad de Agronomía, Universidad

de Buenos Aires.

Miralles, D.J.; S. Arisnabarreta e I. Alzueta. 2011. Desarrollo ontogénico y generación del rendimiento. En: Cebada Cervecera. Eds. Miralles D.J., Benech-Arnold R.L., Abeledo L.G., Editorial Facultad de Agronomía, Buenos Aires, Argentina. ISBN 978-

-9260-84-5. Pp. 1-34.

Munné-Bosch, S. 2005. The role of -tocopherol in plant stress tolerance. Journal of Plant Physiology 162: 743-748.

Passioura, J.B. 1977. Grain yield, harvest index, and water use of wheat. The Journal of the Australian Institute of Agricultural Science 43: 117-121

Sadras, V.O. 2007. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Research 100: 125-138.

Satorre, E.H. and G.A. Slafer, G.A. 1999. Wheat Production Systems of the Pampas. En: Wheat. Ecology and physiology of yield determination. Eds. Satorre E.H., Slafer G.A., Food Product Press, New York. ISBN 978-156-0228-74-5. Pp. 333-348.

Schlesinger, M.J. 1990. Heat shock proteins. The Journal of Biological Chemistry 265: 12111-12114.

Slafer, G.A. and F.H. Andrade. 1989. Genetic improvement in bread wheat (Triticum aestivum L.) yield in Argentina. Field Crops Research 21: 289-296.

Slafer, G.A. and F.H. Andrade. 1991. Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum L.) through genetic improvement of grain yield potential at different regions of the world. A review. Euphytica 58: 37-49.

Slafer, G.A.; E.H. Satorre and F.H. Andrade. 1994. Increases in grain yield in bread wheat from breeding and associated physiological changes. En: Genetic Improvement of Field Crops. Ed. Slafer, G.A. Marcel Dekker, New York, Estados Unidos. ISBN 0-8247-8980-6.Pp.1-68.

Slafer, G.A. and R. Savin. 1994. Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crops Research. 37: 39-49.

Slafer, G.A.; D.J. Miralles; R. Savin; E.M. Whitechurch y F.G. González., 2003. Ciclo ontogénico, dinámica del desarrollo y generación del rendimiento y la calidad en trigo. En: Producción de Granos. Eds. Satorre, E.H.; R.L. Benech-Arnold; G.A. Slafer; E. de la Fuente; D.J. Miralles; M.E. Otegui y R. Savin. Editorial Facultad deAgronomía, Buenos Aires, Argentina. ISBN 950-29-0713-2. Pp. 99-132.


Enlaces refback

  • No hay ningún enlace refback.



Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Agronomía&Ambiente. Revista de la Facultad de Agronomía (UBA)

ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)

Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar