Bioaccumulation and physiological responses of Festuca arundinacea (Poaceae) to Zn(II) excess

Matias Gonzalez, Marcela Ruscitti, Josefina Plaza Cazón, María Arango

Resumen


There is evidence showing that Festuca arundinacea plants can absorb and accumulate high amounts of Zn(II), greater than those considered as phytotoxic, without affecting plant growth. In order determine the usefulness of this species as a phytoremediation plant, a pot experiment was carried out to measure the physiological strategies employed by F. arundinacea ‘Malma’ Schreb plants growing in environments with an excess of Zn(II). The plants were grown until reaching adequate biomass, when increasing concentrations of Zn(II) were applied. Three months later, growth parameters (total biomass and leaf area), physiological parameters (relative membrane conductivity, chlorophyll and carotene contents, malondialdehyde in roots, and soluble proteins) and Zn(II) content were determined. Total biomass, leaf area, chlorophyll, carotene and protein contents in the aerial part showed a decline with the increase of Zn(II) concentration, whereas the relative conductivity, the protein content and malondialdehyde in roots showed the opposite pattern. Our results suggest that this species can be used for the phytostabilization of polluted soils with moderate concentrations of Zn(II).


Palabras clave


Festuca arundinacea; zinc stress; physiological parameters; bioaccumulation; phytostabilization

Texto completo:

PDF (English)

Referencias


Albornoz, C.B., Larsen, K., Landa, R., Quiroga, M.A., Najle, R. and Marcovecchio, J. (2016). Lead and zinc determinations in Festuca arundinaceaand Cynodon dactylon collected from contaminated soils in Tandil (Buenos Aires Province, Argentina). Environmental Earth Sciences, 75(9): 742-750. doi: 10.1007/s12665-016-5513-9.

Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N.V., Wenzel, W.W., and Rinklebe, J. (2017). Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation - a review. Earth-Science Reviews, 171: 621-645. doi: 10.1016/j.earscirev.2017.06.005.

Bayçu, G., Gevrek-Kürüm, N., Moustaka, J., Csatári, I., Rognes, S.E., and Moustakas, M. (2017). Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Environmental Science and Pollution Research, 24(3): 2840-2850. doi: 10.1007/s11356-016-8048-4.

Bechaieb, R., Fredj, A.B., Akacha,A.B., and Gérard, H. (2016). Interactions of copper(II) and zinc(II) with chlorophyll: insights from density functional theory studies. New Journal of Chemistry, 40(5): 4543–4549. doi: 10.1039/c5nj03244j.

Bharagava,R.N., Saxena, G., and Mulla, S.I. (2020). Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management. In: Saxena G., Bharagava R. (eds) Bioremediation of Industrial Waste for Environmental Safety, Singapore,Springer, pp. 1-18. doi: 10.1007/978-981-13-1891-7_1.

Bonfranceschi, A., Flocco, C.G., and Donati,E.R. (2017). Study of heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment. Journal of Hazardous Materials, 165: 366-371. doi: 10.1016/j.jhazmat.2008.10.024.

Bouain, N., Shahzad, Z., Rouached, A., Khan, G.A., Berthomieu, P., Abdelly, C., and Rouached, H. (2014). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20):5725-5741. doi: 10.1093/jxb/eru314.

Bradford, M.M. (1976).A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. AnalyticalChemistry, 72: 248–254. doi: 10.1016/0003-2697(76)90527-3.

Cakmak, I. (2015).Zinc para la producción global sustentable de cultivos y mejores dietas nutricionales. Dissertation, Curso Internacional de Nutrición de Cultivos, Mexico, Intagri.

Cao, A., Cappai, G., Carucci, A., and Muntoni, A. (2004). Selection of plants for zinc and lead phytoremediation. Journal of Environmental Science & Health, 39(4): 1011-1024. doi: 10.1081/ESE-120028410.

Chaudhry, H., Nisar, N., Mehmood, S., Iqbal, M., Nazir, A., and Yasir, M. (2020). Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatalysis and Agricultural Biotechnology, 23(101489): 1-5. doi: 10.1016/j.bcab.2019.101489

Cherif, J., Mediouni, C., Ammar, W.B., and Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). Journal of Environmental Sciences, 23(5):837-844. doi: 10.1016/S1001-0742(10)60415-9.

Dang, H., Li, R., Sun, Y., Zhang, X., and Li, Y. (2010). Absorption, accumulation and distribution of zinc in highly-yielding winter wheat. Agricultural Sciences in China, 9(7): 965-973. doi: 10.1016/S1671-2927(09)60178-4.

Desjardins, D., Pitre, F.E., Nissim, W.G., and Labrecque, M. (2016). Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. International Journal of Phytoremediation, 18(6): 598-604. doi: 10.1080/15226514.2015.1086296.

Emamverdian, A., Ding, Y., Mokhberdoran, F., and Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015: 1-18. doi: 10.1155/2015/756120.

Gill, S.S., andTuteja, N. (2010).Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016.

Glińska, S., Gapińska, M., Michlewska, S., Skiba, E., andKubicki, J. (2016). Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma, 253(2): 367-377. doi: 10.1007/s00709-015-0816-3.

Heath, R.L., and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Biochemistry and Biophysics Reports, 125: 189–198. doi: 10.1016/0003-9861(68)90654-1.

Hosseini, Z., and Poorakbar, L. (2013).Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH. Journal of Stress Physiology & Biochemistry, 9(1): 66-73.

Jan, S., and Parray, J.A. (2016).Heavy Metal Uptake in Plants. In: Approaches to Heavy Metal Tolerance in Plants, Springer, Singapore, pp.1-18. doi: 10.1007/978-981-10-1693-6_1.

Kavuličová, J., Kaduková, J., andIvánová, D. (2012). The evaluation of heavy metal toxicity in plants using the biochemical tests. Nova Biotechnologica et Chimica, 11(2) 101-110. doi: 10.2478/v10296-012-0011-2.

Kaya, C., Ashraf, M., andAkram, N.A. (2018). Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime. Environmental Science and Pollution Research, 25(13):12612-12618. doi: 10.1007/s11356-018-1510-8.

Khashij, S., Karimi, B., and Makhdoumi, P. (2018). Phytoremediation with Festuca arundinacea: A Mini Review. International Journal of Health and Life Sciences, 4(2): e86625. doi: 10.5812/ijhls.86625.

Kumar, S.S., Kadier, A. andMalyan, S.K., Ahmad A., and Bishnoi N.R. (2017). Phytoremediation and Rhizoremediation: Uptake, Mobilization and Sequestration of Heavy Metals by Plants. In: Singh D, Singh H, Prabha R (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives, Singapore,Springer,pp.367-394. doi: 10.1007/978-981-10-6593-4_15.

Laidinen, G.F., Kaznina, N.M., Batova, Y.V., and Titov, A.F. (2018). The Resistance of Phleum pratense and Elytrigia repens to high concentrations of zinc. Bulletin of the Russian Academy of Sciences, 45(5): 454-460. doi: 10.1134/S1062359018050114.

Li, X., Yang, Y., Zhang, J., Jia, L., Li, Q., Zhang, T., and Ma, S. (2012). Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicology and Environmental Safety, 86: 198-203. doi: 10.1016/j.ecoenv.2012.09.021.

Lutts, S., Kinet, J.M., and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differs in salinity resistance. Annals of Botany, 78: 389-398. doi: 10.1006/anbo.1996.0134.

Marichali, A., Dallali, S., Ouerghemmi,S., Sebei, H., and Hosni, K. (2014). Germination, morpho-physiological and biochemical responses of coriander (Coriandrum sativum L.) to zinc excess. Industrial Crops and Products, 55:248–257. doi: 10.1016/j.indcrop.2014.02.033.

Mateos-Naranjo, E., Castellanos, E.M., and Perez-Martin, A. (2014).Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environmental and Experimental Botany, 100: 114-121. doi: 10.1016/j.envexpbot.2013.12.023.

Mukhopadhyay,M., Das, A., Subba, P., Bantawa, P., Sakrar, B., and Ghosh, P. (2013). Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biologia plantarum, 57:474–480. doi: doi.org/10.1007/s10535-012-0300-2.

Papaioannou, D., Kalavrouziotis, I.K., Koukoulakis, P.H., Papadopoulos, F., Psoma, P., and Mehra, A. (2019). Simulation of soil heavy metal pollution environmental stress on plant growth characteristics in the presence of wastewater. Global NEST Journal, 21(1): 23-29. doi: 10.30955/gnj.002758.

Peng, D., Shafi, M., Wang, Y., Li,S., Yan, W., Chen, J., and Liu, D. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environmental Science and Pollution Research, 22(19): 14983-14992. doi: 10.1007/s11356-015-4692-3.

Radić, S., Babić, M., Škobić, D., Roje, V., and Pevalek-Kozlina, B. (2010). Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety, 73(3): 336-342. doi: 10.1016/j.ecoenv.2009.10.014.

Ruscitti, M., Arango, M., and Beltrano, J. (2017). Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theoretical and Experimental Plant Physiology, 29(1): 37-49. doi: 10.1007/s40626-016-0081-7.

Sagardoy, R., Morales, F., López-Millán, A., Abadía, A., and Abadía, J. (2009). Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology, 11: 339-350. doi:10.1111/j.1438-8677.2008.00153.x.

Sarma, H. (2011).Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science & Technology, 5(2):118-138. doi: 10.3923/jest.211.118.138.

Saxena, G., Purchase, D., Mulla, S.I., Saratale, G.D., and Bharagava, R.N. (2020). Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. In: de Voogt P. (eds)Reviews of Environmental Contamination and Toxicology, Cham (Switzerland),Springer, 249: pp.71-131. doi: 10.1007/398_2019_24.

Sidhu, G.P.S. (2016). Physiological, biochemical and molecular mechanisms of zinc uptake, toxicity and tolerance in plants. Journal of Global Biosciences, 5(9): 4603-4633.

Sidhu, G.P.S., Bali, A.S., Singh, H.P., Batish, D.R., and Kohli, R.K. (2020).Insights into the tolerance and phytoremediation potential of Coronopusdidymus L. (Sm) grown under zinc stress. Chemosphere,244: 125350. doi: 10.1016/j.chemosphere.2019.125350.

Singh, R., Jha, A.B., Misra, A.N., and Sharma, P. (2019). Adaption Mechanisms in Plants Under Heavy Metal Stress Conditions During Phytoremediation. In Phytomanagement of Polluted Sites, Uttar Prades (India), Elsevier, pp. 329-360. doi: 10.1016/B978-0-12-813912-7.00013-2.

Sosa-Torres, M.E., Saucedo-Vázquez, J.P., and Kroneck, P.M. (2015). The Magic of Dioxygen. In: Kroneck P., Sosa Torres M. (eds.) Sustaining Life on Planet Earth: Metallo enzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences,Cham (Switzerland),Springer, 15: pp.1-12. doi: 10.1007/978-3-319-12415-5_1.

Tsonev, T., and Lidon, F.J.C. (2012).Zinc in plants- An overview. Emirates Journal of Food and Agriculture, 24:322–333.

Wellburn, A.R. (1994). The spectral determination of chlorophylls A and B, as well as total caroteinds, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2.

Xu, Q., Chu, W., Qiu, H., Fu, Y., Cai, S., and Sha, S. (2013).Responses of Hydrilla verticullata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications.Plant Physiology and Biochemistry,69: 43–48. doi: 10.1016/j.plaphy.2013.04.018.

Zamani, N., Sabzalian, M.R., Khoshgoftarmanesh, A., andAfyuni, M. (2015).Neotyphodium endophyte changes phytoextraction of zinc in Festuca arundinacea and Lolium perenne. International Journal of Phytoremediation, 17(5): 456-463. doi: 10.1080/15226514.2014.922919.

Zhang, X., Wang, X., Zhuang, L., Gao, Y., and Huang, B. (2019). Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Plant Physiology, 167(4): 488-501. doi: 10.1111/ppl.12975.

Zhong, B., Chen, J., Shafi, M., Guo, J., Wang, Y., and Wu, J. (2017). Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Ecotoxicology and Environmental Safety, 138: 71-77. doi: 10.1016/j.ecoenv.2016.12.020.


Enlaces refback

  • No hay ningún enlace refback.



Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Agronomía&Ambiente. Revista de la Facultad de Agronomía (UBA)

ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)

Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar