Tolerancia de Vicia villosa Roth al exceso hídrico en un suelo proveniente de la cuenca del Río Salado (Argentina)
Resumen
La cuenca del Río Salado, en el centro-norte de la provincia de Buenos Aires, es una importante región ganadera afectada por inundaciones periódicas. El uso de especies forrajeras tolerantes al exceso hídrico mejoraría su sostenibilidad. Este estudio evaluó la tolerancia de Vicia villosa Roth al exceso hídrico y su simbiosis con hongos micorrícicos arbusculares (HMA). Para ello, se analizó el efecto de 20 días de exceso hídrico sobre el crecimiento, la nutrición fosforada y la asociación con HMA en plantas cultivadas en invernáculo 35 días desde la siembra en macetas que disponían de un suelo Natracuol típico de la cuenca. Las plantas control y las sometidas a exceso hídrico alcanzaron un nivel de biomasa aérea similar. Sin embargo, la biomasa radical disminuyó 40% y el largo radical específico aumentó 75% en plantas expuestas al exceso hídrico. La concentración de clorofila total y carotenos también fue menor bajo exceso hídrico. El fósforo en tejido y su absorción específica, así como la colonización micorrícica y la eficiencia de la simbiosis, no difirieron entre grupos de plantas. La eficiencia de tolerancia al exceso hídrico de las plantas de V. villosa fue del 70% en comparación con las plantas control. La estrategia de V. villosa para tolerar el exceso hídrico implicaría aumentar el largo radical específico y la superficie de absorción, lo que permitiría sostener la eficiencia de absorción de fósforo y la producción de biomasa aérea.
Palabras clave
Texto completo:
PDFReferencias
Antonelli, C. J., Calzadilla, P.I., Escaray, F.J., Babuin, M.F., Campestre, M.P., Rocco, R., Bordenave, C. D., Perea García, A., Nieva, A.S., Llames. M.E., Maguire, V., Melani, G., Sarena, D., Bailleres, M., Carrasco, P., Paolocci, F., Garriz, A., Menéndez, A. y Ruiz, O. A. (2016) Lotus spp: Biotechnological strategies to improve the bioeconomy of lowlands in the Salado River Basin (Argentina). AGROFOR International Journal 1(2), 43-47. http://dx.doi.org/10.7251/AGRENG1602043A
Chaneton, E., Facelli, J. y León, R. (1988) Floristic changes induced by flooding on grazed lowland grasslands in Argentina. Journal of Range Management 41(6), 495-499. http://dx.doi.org/10.2307/3899525
Checa-Cordoba, E., Esteban, E. J. L., Emilio, T., Lira-Martins, D., Schietti, J., Pinto, J. P. V., Tomasella, J., y Costa, F. R. C. (2024). Soil water regime and nutrient availability modulate fine root distribution and biomass allocation in amazon forests with shallow water tables. Plant and Soil. https://doi.org/10.1007/s11104-024-06972-5
Cofré, N., Urcelay, C., Wall, L. G., Domínguez, L., y Becerra, A. (2018). El potencial de colonización micorrícico-arbuscular varía entre prácticas agrícolas y sitios en diferentes áreas geográficas de la Región Pampeana. Ecologia Austral, 28(3), 581–592. https://doi.org/10.25260/EA.18.28.3.0.696
Colmer TD y Voesenek B (2009) Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 36, 665–681. https://doi.org/10.1071/fp09144
Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., y Svistoonoff, S. (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10), 370. https://doi.org/10.3390/d12100370
Di Bella, C. E., García-Parisi, P. A., Lattanzi, F. A., Druille, M., Schnyder, H., y Grimoldi, A. A. (2019). Grass to legume facilitation in saline-sodic steppes: influence of vegetation seasonality and root symbionts. Plant and Soil, 443(1–2), 509–523. https://doi.org/10.1007/s11104-019-04247-y
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo C.W. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
Enkhbat, G., Ryan, M. H., Foster, K. J., Nichols, P. G. H., Kotula, L., Hamblin, A., Inukai, Y., y Erskine, W. (2021). Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses. Plant and Soil, 464(1–2), 467–487. https://doi.org/10.1007/s11104-021-04959-0
Escudero, V., y Mendoza, R. (2005). Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza, 15(4), 291–299. https://doi.org/10.1007/s00572-004-0332-3
Francis, C. M., Enneking, D., y Abd El Moneim, A. M. (2000). When and where will vetches have an impact as grain legumes? En Linking Research and Marketing Opportunities for Pulses in the 21st Century (pp. 375–384). Springer Netherlands.
Fusconi A y Mucciarelli M (2018) How important is arbuscular mycorrhizal colonization in wetland and aquatic habitats?. Environmental and Experimental Botany 155, 128-141. https://doi.org/10.1016/j.envexpbot.2018.06.016
García, I. (2021) Lotus tenuis and Schedonorus arundinaceus co-culture exposed to defoliation and water stress. Revista de la Facultad de Ciencias Agrarias UNCuyo 53(2), 100-108. https://doi.org/10.48162/rev.39.044
García, I. (2025). Lotus tenuis in association with Arbuscular Mycorrhizal Fungi is more tolerant to partial submergence than to high-intensity defoliation. Plant Biology, 16, 47. https://doi.org/10.3390/ijpb16020047
García, I., Mendoza, R., y Pomar, M. C. (2008). Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant and Soil, 304(1–2), 117–131. https://doi.org/10.1007/s11104-007-9526-8
García, P. E., Badano, N. D., Menéndez, A. N., Bert, F., García, G., Podestá, G., Rovere, S., Verdin, A., Rajagopalan, B., y Arora, P. (2018). Influencia de los cambios en el uso del suelo y la precipitación sobre la dinámica hídrica de una cuenca de llanura extensa. Caso de estudio: Cuenca del Río Salado, Buenos Aires, Argentina. Ribagua 5(2), 92–106. http://dx.doi.org/10.1080/23863781.2018.1495990
García, I. y Mendoza, R. E. (2008) Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradientes. Federation of European Microbiological Societies 63(3), 359-371. https://doi.org/10.1111/j.1574-6941.2008.00441.x
Haffani, S., Mezni, M., Slama, I., Ksontini, M. y Chaibi, W. (2013) Plant growth, water relations and proline content of three vetch species under water-limited conditions. Grass and Forage Science 69(2), 323-333. https://doi.org/10.1111/gfs.12034
He, W.X., Wu, Q.S., Hashem, A., Abd_Allah, E. F., Muthuramalingam, P., Al-Arjani, A.B. F., y Zou, Y. N. (2022). Effects of symbiotic fungi on sugars and soil fertility and structure-mediated changes in plant growth of Vicia villosa. Agriculture, 12(10), 1523. https://doi.org/10.1111/gfs.12034
He, W.X., Sun, Q.F., Hashem, A., Abd_Allah, E. F., Wu, Q.S., y Xu, Y. J. (2023). Sod culture with Vicia villosa alters the diversity of fungal communities in walnut orchards for sustainability development. Sustainability, 15(13), 10731. https://doi.org/10.3390/su151310731
Hiler, E. A., van Babel, C. H. M., Hossain, M. M., y Jordan, W. R. (1972). Sensitivity of southern peas to plant water deficit at three growth stages. Agronomy Journal, 64(1), 60–64. https://doi.org/10.2134/agronj1972.00021962006400010020x
Hoveland, C. S., y Donnelly, E. D. (1966). Response of Vicia genotypes to flooding. Agronomy Journal, 58(3), 342–345. https://doi.org/10.2134/agronj1966.00021962005800030029x
Ipsilantis, I. y Sylvia, D. M. (2007) Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Applied Soil Ecology. 35, 261–271. https://doi.org/10.1016/j.apsoil.2006.09.003
Jackson, M. L. (1958) Soil chemical analysis. Method of soil analysis, Part 2. Chemical and Microbiological Properties. pp 801.
Kingsbury, R. W., Epstein, E y Peary, R. W. (1984) Physiological responses to salinity in selected lines of wheat. Plant Physiol 74: 417–423. https://doi.org/10.1104/pp.74.2.417
Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1
Malik, A. I., Ailewe, T. I., y Erskine, W. (2015). Tolerance of three grain legume species to transient waterlogging. AoB Plants, 7. https://doi.org/10.1093/aobpla/plv040
McGonigle, T. P., Miller, M.H., Evans, D.H., Fairchild, G. L. y Swan, J. A. (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. The New Phytologist 115(3), 495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
Mendoza, R. E., Pagani, E. A. y Pomar, M. C. (2000) Population variation of Lotus glaber and its relationship with P uptake from the soil. Ecologia Austral 10(1), 3-14. https://ri.conicet.gov.ar/bitstream/handle/11336/59247/CONICET_Digital_Nro.57ed177b-f3f4-4356-840a-9e1bf98ae2c9_A.pdf?sequence=2&isAllowed=y
Mendoza, R., Escudero, V. y García, I. (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275, 305–315. https://doi.org/10.1007/s11104-005-2501-3
Menon-Martínez, F. E., Grimoldi, A. A., Striker, G. G. y Di Bella, C. E. (2024) Changes in morphological traits associated with waterlogging, salinity and saline waterlogging in Festuca arundinacea. Functional Plant Biology 51: FP23140. https://doi.org/10.1071/fp23140
Miller, S. P. y Sharitz, R. R. (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology 14(6), 738-748. https://doi.org/10.1046/j.1365-2435.2000.00481.x
Mishra, S. K., Patro, L., Mohapatra, P. K., y Biswal, B. (2008). Response of senescing rice leaves to flooding stress. Photosynthetica, 46(2), 315–317. https://doi.org/10.1007/s11099-008-0058-0
Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., Maskey, S. L., Sampet, C., Rerkasem, B., Khan, D. F., Hauggaard-Nielsen, H., y Jensen, E. S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis (Philadelphia, Pa.), 48(1–3), 1–17. https://doi.org/10.1007/BF03179980
Perelman, S. B., León, R. J. C. y Oesterheld, M. (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. Journal of Ecology 89, 562–577.
Phillips, J. M. y Hayman, D. S. (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1), 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3
Renzi, J. y Cantamutto, M. (2013). Vicias: Bases agronómicas para el manejo en la Región Pampeana. INTA
Renzi, J. P., Garayalde, A. F., Brus, J., Pohankova, T., Smýkal, P., y Cantamutto, M. A. (2023). Environmental and agronomic determinants of hairy vetch (Vicia villosa Roth) seed yield in rainfed temperate agroecosystems. European Journal of Agronomy: The Journal of the European Society for Agronomy, 147(126822), 126822. https://doi.org/10.1016/j.eja.2023.126822
Ryan, M. H., McCully, M. E., y Huang, C. X. (2003). Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. The New Phytologist, 160(2), 429–441. https://doi.org/10.1046/j.1469-8137.2003.00884.x
Sainz Rozas, H., Echeverria, H. y Angelini, H (2012). Fósforo disponible en suelos agrícolas de la región Pampeana y ExtraPampeana argentina. Revista de Investigaciones Agropecuarias. 38(1), 33-39.
Sarafian, P. (2006) Cuenca del Río Salado de Buenos Aires. Portal Oficial del Estado Argentino.
Sauter, M. (2013). Root responses to flooding. Current Opinion in Plant Biology, 16(3), 282–286. https://doi.org/10.1016/j.pbi.2013.03.013
Seyedeh, H. D., Kashani, A., Paknejad, F., Jafary, H., Al-Ahmadi, M. J., Tookalloo, M. R. y Lamei, J. (2010) Evaluation of Hairy Vetch (Vicia villosa Roth) in Pure and Mixed Cropping with Barley (Hordeum vulgare L.) to Determine the Best Combination of Legume and Cereal for Forage Production. American Journal of Agricultural and Biological Sciences 5(2), 169-176.
Smith, S. E. y Read, D. J. (2008) Mycorrhizal symbiosis Third Edition.
Šola, I., Stić, P., y Rusak, G. (2021). Effect of flooding and drought on the content of phenolics, sugars, photosynthetic pigments and vitamin C, and antioxidant potential of young Chinese cabbage. European Food Research and Technology, 247(8), 1913–1920. https://doi.org/10.1007/s00217-021-03759-1
Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., et al. (1991) Rio de la Plata grasslands. Ecosystems of the world 8(a): 367-407.
Srivastava, A. K., Kashyap, P. L., Santoyo, G., Newcombe, G. (2021). Plant Microbiome: Interactions, Mechanisms of Action, and Applications. Volume II. Frontiers in Microbiology: 12.
Steffens, B. y Rasmussen, A. (2016). The Physiology of Adventitious Roots. Plant Physiology 170(2), 603-617. https://doi.org/10.1104/pp.15.01360
Striker, G. (2012) Flooding Stress On Plants: Anatomical, Morphological And Physiological Responses. Botany. https://doi.org/10.5772/32922
Striker, G. y Colmer, T. D. (2017) Flooding tolerance of forage legumes. Journal of Experimental Botany 68(8), 1851–1872. https://doi.org/10.1093/jxb/erw239
Tian, J., Dong, G., Karthikeyan, R., Li, L., y Harmel, R. (2017). Phosphorus dynamics in long-term flooded, drained, and reflooded soils. Water, 9(7), 531. https://doi.org/10.3390/w9070531
Tuheteru, F. D., Cecep, K., Mansur, I., y Iscandar. (2015). Response of Lonkida (Nauclea orientalis L.) towards Mycorrhizal Inoculum in Waterlogged Condition. Biotropia, 22(1). https://doi.org/10.11598/btb.2015.22.1.416
Ugalde, J. M., y Cardoso, A. A. (2023). When roots talk to shoots about flooding. Plant Physiology, 193(3), 1729–1731. https://doi.org/10.1093/plphys/kiad464
Urlić, B., Dumičić, G., Radić, T., Goreta Ban, S., y Romić, M. (2023). Phosphorus use efficiency of leafy Brassica sp. Grown in three contrasting soils: Growth, enzyme activity and phosphorus fractionation. Plants, 12(6). https://doi.org/10.3390/plants12061295
Vázquez, P., Cabria, F., Rojas, M. D. C., y Calandroni, M. (2009). Riesgo de anegamiento: estimaciones para la Cuenca Baja del Río Salado. Ciencia del suelo, 27(2), 237–246.
Wang, J., Sun, H., Sheng, J., Jin, S., Zhou, F., Hu, Z., y Diao, Y. (2019). Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress. BMC Genetics, 20(1), 88. https://doi.org/10.1186/s12863-019-0790-4
Xiaoling, L., Ning, L., Jin, Y., Fuzhou, Y., Faju, C., y Fangqing, C. (2011). Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated Autumn and Winter flooding in Three Gorges Reservoir Region of the Yangtze River, China. Sheng Tai Xue Bao [Acta Ecologica Sinica], 31(1), 31–39. http://dx.doi.org/10.1016/j.chnaes.2010.11.005
Yadollahi, P., Eshghizadeh, H. R., Razmjoo, J., Zahedi, M., Majidi, M. M., y Gheysari, M. (2024). Drought stress tolerance in vetch plants (Vicia sp.): agronomic evidence and physiological signatures. The Journal of Agricultural Science, 163(1), 13-26. https://doi.org/10.1017/S0021859624000522
Ye, D., Xie, M., Zhang, X., Huang, H., Yu, H., Zheng, Z., Wang, Y., y Li, T. (2022). Evaluation for phosphorus accumulation and removal capability of nine species in the Polygonaceae to excavate amphibious superstars used for phosphorus-phytoextraction. Chemosphere, 308(2), 136361. https://doi.org/10.1016/j.chemosphere.2022.136361
Zhang, Y., Chen, X., Geng, S., y Zhang, X. (2025). A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Frontiers in Plant Science, 16, 1545912. https://doi.org/10.3389/fpls.2025.1545912
Enlaces refback
- No hay ningún enlace refback.

Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .
ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)
Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0221 - efa@agro.uba.ar