EPIDEMIAS DE ROYA AMARILLA DEL TRIGO. NUEVAS RAZAS EN EL MUNDO, MONITOREO Y DECISIÓN DE USO DE FUNGICIDAS

Marcelo Carmona, Francisco Sautua

Resumen


La roya amarilla, también llamada estriada o lineal, es una enfermedad de los cultivos de cereales (trigo y cebada) y gramíneas, causada en trigo por Puccinia striiformis f. sp. tritici (Pst), que es conocida desde hace varios cientos de años. El objetivo principal de esta revisión es analizar los aspectos genéticos y epidemiológicos más importantes de la roya amarilla del trigo, con especial énfasis en el monitoreo y en las decisiones de manejo químico. La roya amarilla, es una enfermedad policíclica, cuyo desarrollo epidémico depende principalmente de la tasa de desarrollo de la enfermedad. Las epidemias de la roya amarilla se ven afectadas por diversos factores agronómicos y ambientales, especialmente la susceptibilidad del hospedante y factores climáticos como la humedad y la temperatura. La rápida evolución del patógeno crea varias razas o patotipos que están más especializados para infectar diferentes cultivares, que portan diferentes genes de resistencia raza-específicos. La resistencia a la roya amarilla puede separarse en resistencia a todas las etapas de desarrollo (también llamada de plántula) y resistencia en planta adulta. La primera se puede detectar en la etapa de plántula y es efectiva en todas las etapas de crecimiento del cultivo. La segunda implica susceptibilidad en la etapa de plántula, pero éstas se vuelven cada vez más
resistentes cuando las plantas crecen y envejecen. Durante los últimos años en Europa, muchos genes de resistencia se volvieron ineficaces durante la reciente incursión devastadora de nuevas razas de Pst, originarias de la región del Himalaya, probablemente dispersadas por el viento a larga distancia. Este nuevo grupo racial se identificó por primera vez en la variedad de trigo ‘Warrior’ en 2011, y reemplazó por completo a la población de Pst existente antes de la invasión. En Argentina, durante las últimas dos temporadas agrícolas hubo epidemias de roya amarilla en regiones con temperaturas medias más altas donde nunca antes se habían registrado. En 2017, mediante una prospección de la epidemia en Pradera Pampeana, coordinada por la Catedra de Fitopatología de la FAUBA, el Global Rust Reference Center ha determinado nuevas razas de Pst. El manejo integrado de esta enfermedad se basa principalmente en desarrollar y cultivar variedades con resistencia adecuada y duradera y, en segundo lugar, realizar aplicaciones eficientes de fungicida, en el momento adecuado, solo cuando sea necesario. Actualmente, los estudios de investigación con enfoques a nivel celular y molecular se están utilizando para desarrollar
variedades de trigo resistentes.

Palabras clave


P. striiformis f. sp. tritici; epidemias; resistencia genética; umbral de daño económico

Texto completo:

PDF

Referencias


Ali, S.; P. Gladieux; M. Leconte; A. Gautier; A. F. Justesen; M. S. Hovmøller; J. Enjalbert and C. de Vallavieille-Pope. 2014. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog 10(1): e1003903. doi: 10.1371/journal.ppat.1003903

Ali, S.; J. Rodriguez-Algaba; T. Thach; C. K. Sørensen; J. G. Hansen; P. Lassen; K. Nazari; D. P. Hodson; A. F. Justesen and M. S. Hovmøller. 2017a. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages. Frontiers in Plant Science 8: 1057. doi: 10.3389/fpls.2017.01057

Ali, S.; S. Sharma; M. Leconte; S. J. A. Shah; E. Duveiller; J. Enjalbert and C. de Vallavieille-Pope. 2017b. Low pathotype diversity in a recombinant Puccinia striiformis population through convergent selection at the Eastern part of Himalayan centre of diversity (Nepal). Plant Pathology (in press). doi: 10.1111/ppa.12796

Bal, R. S. 2014. Effect of some fungicides and time of fungicidal spray on stripe rust of wheat. Journal of Plant and Pest Science 1(1): 39-43.

Beard, C.; R. Loughman and G. Thomas. 2005. Managing stripe rust and leaf rust. Farmnote núm. 43/2005. Department of Agriculture. Government of Western Australia.

Beddow, J. M.; P. G. Pardey; Y. Chai; T. M. Hurley; D. J. Kriticos; H. J. Braun; R. F. Park; W. S. Cuddy and T. Yonow. 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants 1: 1-5. doi: 10.1038/NPLANTS.2015.132

Boshoff, W. H. P.; Z. A. Pretorius and B. D. van Niekerk. 2003. Fungicide efficacy and the impact of stripe rust on spring and winter wheat in South Africa. South African Journal of Plant and Soil, 20(1): 11-17. doi: 10.1080/02571862.2003.10634898

Brar, G. S. 2015. Population structure of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in western Canada. Master Thesis, University of Saskatchewan, Canada. 173 p.

Brar, G. S.; R. Graf; R. Knox; H. Campbell and H. R. Kutcher. 2017. Reaction of differential wheat and triticale genotypes to natural stripe rust [Puccinia striiformis f. sp. tritici] infection in Saskatchewan, Canada. Canadian Journal of Plant Pathology 39(2): 1-24. doi: 10.1080/07060661.2017.1341433

Brown, J. S. and R. J. Holmes. 1983. Guidelines for use of foliar sprays to control stripe rust of wheat in Australia. Plant Disease 67: 485-487.

Campos, P.; N. Formento; L. Couretort y E. Alberione. 2016. Aparición epifítica de roya amarilla del trigo en la región pampeana argentina. Disponible en: http://inta.gob.ar/documentos/aparicion-epifitica-de-roya-amarilla-del-trigoen-la region-pampeana-argentina

Cantu, D.; V. Segovia; D. MacLean; R. Bayles; X. Chen; S. Kamoun; J. Dubcovsky; D. G. Saunders and C. Uauy. 2013. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 14: 270. doi: 10.1186/1471-2164-14-270

Carmona, M.; E. M. Reis y P. Cortese. 2000. Royas del Trigo. Diagnóstico, epidemiología y estrategias de control. 21 pp. 2000. ISBN 987-43-2641-7.

Carmona, M.; V. Sugía; E. Jaeggi y E. M. Reis. 2004. Roya de la hoja de trigo (Puccinia triticina): estimación de daños y pérdidas, y su relación con el control químico como estrategia racional y económica. Fitopatología Brasilera 29: 90.

Carmona, M.; F. Sautua y E. M. Reis. 2012. Sistemas de ayuda a la decisión de control químico en cultivos de trigo y cebada. 155-166 pp. En: “Cereales de invierno: la investigación científico-técnica desarrollada por el INBA, CONICET-FAUBA, el BIOLAB Azul, CIC-PBA-FIBA-FAUNCPBA, la Facultad de Agronomía-UBA y la Facultad de AgronomíaUNCPBA”. Stenglein, S. A.; W. J. Rogers; M. Carmona y R. Lavado (Eds.). 1ª ed., Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires. ISBN 978-950-658-301-9

Carmona, M. y F. Sautua. 2017. La problemática de la resistencia de hongos a fungicidas. Causas y efectos en cultivos extensivos. Agronomía & Ambiente Rev. Facultad de Agronomía UBA 37(1): 1-19. Disponible en: http://ri.agro.uba.ar/files/download/revista/agronomiayambiente/2017carmonamarcelo.pdf

Carpenter, N. R.; C. A. Griffey; S. Malla; M. Barnett; D. Marshall; M. O. Fountain; J. P. Murphy; E. Milus; J. Johnson; J. Buck; S. Chao; G. L. Brown-Guedira and E. Wright. 2017. Identification of Quantitative Resistance to Puccinia striiformis and Puccina triticinia in the Soft Red Winter Wheat Cultivar ‘Jamestown’. Crop Science 57(6): 2991-3001. doi: 10.2135/cropsci2017.03.0143

Coradini, C.; F. Piccinini: G. Boschmann Reimche; I. F. Dressler da Costa and S. L. de Oliveir Machado. 2016. Efeito de óleo essencial de laranja associados a fungicidas no controle de doenças foliares do trigo. Summa Phytopathologica 42(1): 105 106. doi: 10.1590/0100-5405/2020

Chen, X. M. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology 27: 314-337. doi: 10.1080/07060660509507230

Chen, X. and J. Zhao. 2007. Identification of molecular markers for Yr8 and a gene for high-temperature, adult-plant resistance against stripe rust in the AVS/6*Yr8 wheat line. American Phytopathological Society Abstracts, San Diego, CA, 7/28-8/2/07, 97:S21.

Chen, X. M. 2010. Stripe Rust. In: Bockus WW, et al. Compendium of Wheat Diseases and Pests. 3rd edition. APS Press. pp. 55-58

Chen, X. M. 2013. Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. American Journal of Plant Sciences 4: 608-627. doi: 10.4236/ajps.2013.43080

Chen, W.; C. Wellings; X. Chen; Z. Kang and T. Liu. 2014. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology 15: 433-446. doi:10.1111/mpp.12116

Chen, X. M. and Z. Kang. 2017a. Introduction: History of Research, Symptoms, Taxonomy of the Pathogen, Host Range, Distribution, and Impact of Stripe Rust. In: Chen, X. M. y Z. Zang (Eds.). Stripe Rust. Springer Netherlands. pp. 1-33. doi: 10.1007/978-94-024-1111-9

Chen, X.M. and Z. Kang. 2017b. Integrated Control of Stripe Rust. In: Chen, X. M. and Z. Zang (Eds.). Stripe Rust. Springer Netherlands. pp. 559-599. doi: 10.1007/978-94-024-1111-9

Chen, X.M. and Z. Kang. 2017c. Stripe Rust Research and Control: Conclusions and Perspectives. In: Chen, X. M. and Z. Zang (Eds.). Stripe Rust. Springer Netherlands. pp. 601-630. doi: 10.1007/978-94-024-1111-9

Cheng, P. and X. M. Chen. 2014. Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology 104: 1208-20. doi: 10.1094/PHYTO-11-13-0314-R

Cheng, P.; L. S. Xu; M. N. Wang; D. R. See and X. M. Chen. 2014b. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theoretical and Applied Genetics127: 2267-2677. doi: 10.1007/s00122-014-2378-8

Cheng, Y.; K. Wu; J. Yao; S. Li; X. Wang; L. Huang and Z. Kang. 2017. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environmental Microbiology 19(5): 1717-1739. doi: 10.1111/1462-2920.13610

Dagvadorj, B.; A. C. Ozketen; A. Andac; C. Duggan; T. O. Bozkurt and M. S. Akkaya. 2017. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Nature Scientific Reports 7: 1141. doi:10.1038/s41598-017-01100-z

deBoer, G. J.; P. Nott and G. M. Kemmitt. 2013. Use of Uptake Spraying Oil to improve fungicidal activity of the triazole fungicide fenbuconazole on Puccinia triticina and Puccinia striiformis rusts of wheat. Plant Health Progress (online). doi:10.1094/PHP-2013-0528-01- RS

de Vallavieille-Pope, C.; L. Huber; M. Leconte and H. Goyeau. 1995. Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedlings. Phytopathology 85: 409-15.

de Vallavieille-Pope, C.; S. Ali; M. Leconte; J. Enjalbert; M. Delos and J. Rouzet. 2012. Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Disease 96: 131-140. doi: 10.1094/PDIS-02-11-0078

Dennis, J. I. 1987. Temperature and wet-period conditions for infection by Puccinia striiformis f. sp. tritici race 104E137A+. Transactions of the British Mycological Society 88: 119-21.

Dong, Z.; J. M. Hegarty; J. Zhang; W. Zhang; S. Chao; X. Chen; Y. Zhou and J. Dubcovsky. 2017. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theoretical and Applied Genetics (online): 1-11. doi: 10.1007/s00122-017-2946-9

Duan, X.; A. Tellier; A. Wan; M. Leconte; C. de Vallavieille-Pope and J. Enjalbert. 2010. Puccinia striiformis f. sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia 102(1): 44-53. doi: 10.3852/08-098

El Jarroudi, M.; L. Kouadio; C. H. Bock; M. El Jarroudi; J. Junk; M. Pasquali; H. Maraite and P. Delfosse. 2017. A Threshold-Based Weather Model for Predicting Stripe Rust Infection in Winter Wheat. Plant Disease 101(5): 693- 703. doi: 10.1094/PDIS-12-16-1766-RE

Farber, D. 2017. The primary disease gradient of Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) across spatial scales. Ph. D. Thesis, Oregon State University. 159 p. Disponible en: https://ir.library.oregonstate.edu/xmlui/handle/1957/59932?show=full

Feng, J. Y.; M. N. Wang; X. M. Chen; D. R. See; Y. L. Zheng; S. M. Chao and A. M. Wan. 2015. Molecular Mapping of YrSP and Its Relationship with Other Genes for Stripe Rust Resistance in Wheat Chromosome 2BL. Phytopathology 105(9): 1206-1213. doi: 10.1094/PHYTO-03-15-0060-R

Garcia, L. C.; C. R. Machado Júnior; G. P. Bochnia; P. H. Weirich Neto and C. G. Raetano. 2016. Adjuvants in fungicide spraying in wheat and soybean crops. Engenharia Agrícola 36(6): 1110-1117. doi: 10.1590/1809-4430-eng.agric. v36n6p1110-1117/2016

Geagea, L.; L. Huber and I. Sache. 1999. Dry-dispersal and rain-splash of brown (Puccinia recondita f.sp. tritici) and yellow (P. striiformis) rust spores from infected wheat leaves exposed to simulated raindrops. Plant Pathology 48: 472-482. doi:10.1046/j.1365-3059.1999.00372.x

Haldorsen, S.; H. Akan; B. Celik and M. Heun. 2011. The climate of the Younger Dryas as a boundary for Einkorn domestication. Veg Hist Archaeobotany 20: 305-318.

Halloway, P. J.; R. T. Rees and D. Stock. 1993. Interactions Between Adjuvants, Agrochemicals and Target Organisms (Ernst Schering Research Foundation Workshop; 12 Ed Springer, 192 pp. ISBN 978-3-662-02990-9 ISBN 978-3-662-02988-6 (eBook)

Hansen, J. G.; P. Lassen; M. Hovmoller and D. Hodson. 2012. ICT framework for global wheat rust surveillance and monitoring. 10th Conference of European Foundation for Plant Pathology, Wageningen, The Netherlands.

Hau, B. and C. de Vallavieille-Pope. 2006. Wind-dispersed diseases. In: Cooke, B.; D. Jones and B. Kaye (Eds.). The Epidemiology of Plant Diseases. Springer, Dordrecht

Herbario Virtual de Fitopatología de la Facultad de Agronomía de la Universidad de Buenos Aires. Disponible en: http://herbariofitopatologia.agro.uba.ar/

Hovmøller, M. S.; A. H. Yahyaoui; E. A. Milus and A. F. Justesen. 2008. Rapid global spread of two aggressive strains of a wheat rust fungus. Molecular Ecology 17: 3818-3826. doi: 10.1111/j.1365-294X.2008.03886.x

Hovmøller, M. S.; S. Walter and A. F. Justesen. 2010. Escalating Threat of Wheat Rusts. Science 329: 369. doi: 10.1126/ science.1194925

Hovmøller, M. S.; S. Walter; R. A. Bayles; A. Hubbard; K. Flath; N. Sommerfeldt; M. Leconte; P. Czembor; J. RodriguezAlgaba; T. Thach; J. G. Hansen; P. Lassen; A. F. Justesen; S. Ali and C. de Vallavieille-Pope. 2016. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathology 65: 402-411. doi: 10.1111/ppa.12433

Hovmøller, M. S.; J. Rodriguez-Algaba; T. Thach and C. Sørensen. 2017a. Race typing of Puccinia striiformis on wheat. In: S. Periyannan (Ed.), Methods in Molecular Biology (New York, NY: Humana Press). pp. 29-40.

Hovmøller, M. S.; J. Rodriguez-Algaba; T. Thach; A. F. Justesen and J. G. Hansen. 2017b. Report for Puccinia striiformis race analyses and molecular genotyping 2016, Global Rust Reference Center (GRRC), Aarhus University, Flakkebjerg, DK- 4200 Slagelse, Denmark. 2 February, 2017.

Hovmøller, M. S.; J. Rodriguez-Algaba; T. Thach; A. F. Justesen and J. G. Hansen. 2018. Report for Puccinia striiformis race analyses and molecular genotyping 2017, Global Rust Reference Center (GRRC), Aarhus University, Flakkebjerg, DK- 4200 Slagelse, Denmark. Published online on 10 February, 2018. http://wheatrust.org/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/Summary_of_Puccinia_striiformis_race_analysis_2017.pdf

Hu, X.; L. Ma; T. Liu; C. Wang; Y. Peng; Q. Pu and X. Xu. 2017. Population Genetic Analysis of Puccinia striiformis f. sp. tritici Suggests Two Distinct Populations in Tibet and the Other Regions of China. Plant Disease 101(2): 288-296. doi: 10.1094/PDIS-02-16-0190-RE

Hubbard, A.; C. M. Lewis; K. Yoshida; R. H. Ramirez-Gonzalez; C. deVallavieille-Pope; J. Thomas; S. Kamoun; R. Bayles; C. Uauy and D. G. Saunders. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology 16: 23. doi: 10.1186/s13059-015-0590-8

Jiao, M.; C. Tan; L. Wang; J. Guo; H. Zhang; Z. Kang and J. Guo. 2017. Basidiospores of Puccinia striiformis f. sp. tritici succeed to infect barberry, while urediniospores are blocked by non-host resistance. Protoplasma (online): 1-10. doi: 10.1007/s00709-017-1114-z

Jin, Y.; L. J. Szabo and M. Carson. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an Alternate Host. Phytopathology 100: 432-435. doi: 10.1094/PHYTO-100-5-0432

Jin, Y. 2011. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica 179(1): 105-108. doi: 10.1007/s10681-010-0328-3

Johnston, P. A.; C. Munro; R. C. Butler; J. Browne; A. Gibbs and S. Shorter. 2017. The Future of Lr34 in Modern, HighInput Wheat Breeding Programs. Crop Science 57: 671-680. doi: 10.2135/cropsci2016.03.0158

Kang, Z. H.; X. Li; A. M. Wan; M. N. Wang and X. M. Chen. 2015. Fungicide sensitivity of the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). Phytopathology 105 (Suppl 4): S4.69.

Kankwatsa, P.; D. Singh; P. C. Thomson; E. M. Babiker; J. M. Bonman; M. Newcomb and R. F. Park. 2017. Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Molecular Breeding 37: 113. doi: 10.1007/s11032-017-0707-8

Kolmer, J.; X. Chen and Y. Jin. 2009. Diseases which Challenge Global Wheat Production-The Wheat Rusts. In: Carver, B. F. (Ed.), Wheat Science and Trade. Wiley-Blackwell, Oxford, UK. pp. 89-124. doi: 10.1002/9780813818832.ch5

Lan, C.; M. S. Randhawa; J. Huerta-Espino and R. P. Singh. 2017. Genetic Analysis of Resistance to Wheat Rusts. In: Periyannan S. (Ed.), Methods in Molecular Biology (New York, NY: Humana Press). pp 137-149.

Lindquist, J. C. 1982. Royas de la República Argentina y zonas limítrofes. Colección científica del INTA. 574 p.

Liu, T.; A. Wan; D. Liu and X. Chen. 2017. Changes of Races and Virulence Genes in Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, in the United States from 1968 to 2009. Plant Disease 101(8): 1522-1532. doi: 10.1094/PDIS-12-16-1786-RE

Liu, W.; M. Maccaferri; X. Chen; G. Laghetti; D. Pignone; M. Pumphrey and R. Tuberosa. 2017. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theoretical and Applied Genetics (online): 1-22. doi: 10.1007/s00122-017-2957-6

Lyon, B. and K. Broders. 2017. Impact of climate change and race evolution on the epidemiology and ecology of stripe rust in central and eastern U.S. and Canada. Canadian Journal of Plant Pathology (online): 1-8. doi: 10.1080/07060661.2017.13687+

Markell, S. G. and E. A. Milus. 2008. Emergence of a Novel Population of Puccinia striiformis f. sp. tritici in Eastern United States. Phytopathology 98(6): 632-639. doi: 10.1094/PHYTO-98-6-0632

McIntosh, R. A.; Y. Yamazaki; J. Dubcovsky; J. Rogers; C. Morris; R. Appels and X. C. Xia. 2013. Catalogue of gene symbols for wheat. 12th international wheat genet symposium, 8–13 September 2013, Yokohama, Japan. Disponile en: http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. (ultimo acceso: Octubre 2017).

McIntosh, R. A., J. Dubcovsky; W. J. Rogers; C. Morris; R. Appels and X. C. Xia. 2014. Catalogue of gene symbols for wheat: 2013–2014 supplement. [Online]. KOMUGI integrated wheat science database. Disponile en: https://shigen.nig.ac.jp/wheat/komugi/genes/symbolListPageAction.do?page=1 (ultimo acceso: Octubre 2017).

McLean, M.; F. Henry and G. Hollaway. 2010. Stripe rust management in wheat. BCG 2010 Season Research Results: 140-142.

McNeal, F. M.; C. F. Konzak; E. P. Smith; W. S. Tate and T. S. Russell. 1971. A system for recording and processing cereal research data. U. S. Agricultural Research Service 42: 34-121.

Milus, E. A., E. Seyran and R. McNew. 2006. Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the southcentral United States. Plant Disease 90: 847-852. doi: 10.1094/PD-90-0847

Milus, E. A.; K. Kristensen and M. S. Hovmøller. 2009. Evidence for Increased Aggressiveness in a Recent Widespread Strain of Puccinia striiformis f. sp. tritici Causing Stripe Rust of Wheat. Phytopathology 99(1): 89-94. doi: 10.1094/PHYTO-99-1-0089

Muleta, K. T.; P. Bulli; S. Rynearson; X. Chen and M. Pumphrey. 2017a. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum). PLoS ONE 12(6): e0179087. doi: 10.1371/journal.pone.0179087

Muleta, K. T.; M. N. Rouse; S. Rynearson; X. Chen; B. G. Buta and M. O. Pumphrey. 2017b. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biology 17: 134. doi: 10.1186/s12870-017-1082-7

Murray, G. 2004. Stripe rust- Spray thresholds, economics of control and risks from sucker varieties, GRDC Research Updates, www.grdc.com.au.

Murray, G.; C. Wellings; S. Simpfendorfer and C. Cole. 2005. Stripe rust: Understanding the disease in wheat. Department of Primari Industries, State of New South Wales, Australia.

Pretorius, Z. A.; C. X. Lan; R. Prins; V. Knight; N. W. McLaren; R. P. Singh; C. M. Bender and F. J. Kloppers. 2017. Application of remote sensing to identify adult plant resistance loci to stripe rust in two bread wheat mapping populations. Precision Agriculture 18(4): 411-428. doi: 10.1007/s11119-016-9461-x

Rahmatov, M. 2016. Genetic Characterisation of Novel Resistance Alleles to Stem Rust and Stripe Rust in Wheat-Alien Introgression Lines. PhD Thesis. Diss. (sammanfattning/summary) Alnarp: Sveriges lantbruksuniv., Acta Universitatis agriculturae Sueciae 78: 1652-6880. Disponible en: https://pub.epsilon.slu.se/13585/1/Rahmatov_M_160822.pdf

Reis, E. M. y M. A. Carmona. 2011. Sensibilidade de razas de Puccinia triticina a fungicidas. En: II SIMPOSIO NACIONAL DE AGRICULTURA, FAGRO - GTI Agricultura y IPNI Cono Sur. pp 89-94. 29 y 30 de setiembre de 2011, Paysandu, Uruguay. Ed. Universidad de la Repúbica, Montevideo, Uruguay - Hemisferio Sur. ISBN 978-9974-0-0781-9

Rodriguez-Algaba, J.; S. Walter; C. K. Sørensen; M. S. Hovmøller and A. F. Justesen. 2014. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genetics and Biology 70: 77-85. doi: 10.1016/j.fgb.2014.07.005

Rudorf, W. and M. Job. 1934. Untersuchungen bezu ¨glich des Spezialisierung von Puccinia graminis tritici. Puccinia trilicina und Puccinia glumarum tritici, sowie u ¨ber Resistenz und ihre Vererbung in verschiedenen Kreuzungen. Pflanzenzu ¨chtung 19: 333-365.

Savadi, S.; P. Prasad; P. L. Kashyap and S. C. Bhardwaj. 2017. Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathology (Accepted). doi: 10.1111/ppa.12802

Seaman, D. 1990. Trends in the formulation of pesticides: An overview. Pesticide Science 29: 437-449.

Schwessinger, B. 2016. Fundamental wheat stripe rust research in the 21st century. New Phytologist (online). doi: 10.1111/nph.14159

Sharma-Poudyal, D.; X. M. Chen; A. M. Wan; G. M. Zhan; Z. S. Kang; S. Q. Cao; S. L. Jin; A. Morgounov; B. Akin; Z. Mert; S. J. A. Shah; H. Bux; M. Ashraf; R. C. Sharma; R. Madariaga; K. D. Puri; C. Wellings; K. Q. Xi; R. Wanyera; K. Manninger; M. I. Ganzález; M. Koyda; S. Sanin and L. J. Patzek. 2013. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Disease 97: 379-386. doi: 10.1094/PDIS-01-12-0078-RE

Singh, R.P.; J. Huerta-Espino and A.P. Roelfs. 2002. The wheat rusts. In: Curtis, B.C.; S. Rajaram and H. Gómez Macpherson (Eds.), Bread Wheat. Food And Agriculture Organization Of The United Nations, Rome. Disponible en: http://www.fao.org/docrep/006/Y4011E/y4011e00.htm#Contents

Song, J.; B. F. Carver; C. Powers; L. Yan; J. Klápště; Y. A. El-Kassaby and C. Chen. 2017. Practical application of genomic selection in a doubled-haploid winter wheat breeding program. Molecular Breeding 37: 117. doi: 10.1007/s11032-017-0715-8

Sørensen, C. K.; M. S. Hovmøller; M. Leconte; F. Dedryver and C. de VallavieillePope. 2014. New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology 104: 1042-1051. doi: 10.1094/PHYTO-12-13-0337-R

Souza, B. J. R.; P. H. Perez; F. C. Bauer; C. G. Raetano; P. H. Weirich Neto and L. C. Garcia. 2014. Adjuvantes em pulverizações de fungicidas na cultura do trigo. Ciência Rural 44(8): 1398-1403. doi: 10.1590/0103-8478cr20131099

Steurbaut, W. 1993. Adjuvants for use with foliar fungicides. Pesticide Science 38: 85- 91.

Stock, D. 1996. Achieving optimal biological activity from crop protection formulations: Design or chance? Pages 791- 800 In: Proc. of the Brighton Crop Prot. Conf. 1996, Pests and Diseases. Vol. 3. British Crop Prot. Counc., Farnham, Surrey, UK.

Stubbs, R. W. 1985. Stripe rust. In: Roelfs, A. P. and W. R. Bushnell (Eds.). The Cereal Rusts, Diseases, Distribution, Epidemiology and Control. London, UK: Academic Press. pp. 61–101.

Sugia, V. 2009. Impacto de la roya de la hoja del trigo (Puccinia triticina) sobre el rendimiento del cultivo. coeficiente de daño y curva de progreso de la enfermedad. Tesis Magister Scientiae en Protección Vegetal (Universidad Nacional de La Plata), 68p.

Thach, T.; S. Ali; C. de Vallavieille-Pope; A. F. Justesen and M. S. Hovmøller. 2016. Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past. Fungal Genetics and Biology 87: 1-8. doi: 10.1016/j.fgb.2015.12.014

Vergara-Diaza, O.; S. C. Kefauvera; A. Elazaba; M. T. Nieto-Taladrizb and J. L. Araus. 2015. Grain yield losses in yellowrusted durum wheat estimated using digital and conventional parameters under field conditions. The Crop Journal 3: 200-210. doi: 10.1016/j.cj.2015.03.003

Walter, S.; S. Ali; E. Kemen; K. Nazari; B. A. Bahri; J. Enjalbert; J. G. Hansen; J. K. M. Brown; T. Sicheritz-Ponten; J. Jones; C. de Vallavieille-Pope; M. S. Hovmøller and A. F. Justesen. 2016. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecology and Evolution 6(9): 2790-2804. doi:10.1002/ece3.2069

Wan, A.; X. Wang, Z. Kang and X. Chen. 2017. Variability of the Stripe Rust Pathogen. In: Stripe Rust. Springer Netherlands. pp. 35-154. doi: 10.1007/978-94-024-1111-9

Wang, Z. Y.; J. Zhao; X. M. Chen; Y. L. Peng; J. J. Ji; S. L. Zhao; Y. J. Lv; L. L. Huang and Z. S. Kang. 2016a. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Disease 100: 131-138. doi: 10.1094/PDIS-12-14-1296-RE

Wang, X.; B. Yang; K. Li; Z. Kang; D. Cantu and J. Dubcovsky. 2016b. A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens. Molecular Plant-Microbe Interactions 29(12): 977-989. doi: 10.1094/MPMI-10-16-0207-R

Wang, J.; F. Tao; F. An; Y. Zou; W. Tian; X. Chen, X. Xu and X. Hu. 2016c. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Molecular Plant Pathology 18(5): 649-661. doi: 10.1111/mpp.12425

Wang, M. and X. Chen. 2017. Stripe Rust Resistance. In: Stripe Rust. Springer Netherlands. pp. 353-558. doi: 10.1007/978-94-024-1111-9

Wang, B.; Y. Sun; N. Song; M. Zhao; R. Liu; H. Feng; X. Wang and Z. Kang. 2017a. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytologist 215: 338–350. doi:10.1111/nph.14577

Wang, J.; F. Tao; W. Tian; Z. Guo; X. Chen; X. Xu; H. Shang and X. Hu. 2017b. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS ONE 12(7): e0181963. doi: 10.1371/journal.pone.0181963

Wellings, C. R.; R. A. McIntosh and J. Walker. 1987. Puccinia striiformis f. sp. tritici in eastern Australia-possible means of entry and implications for plant quarantine. Plant Pathology 36: 239-241. doi: 10.1111/j.1365-3059.1987. tb02230.x

Wellings, C. R.; D. G. Wright; F. Keiper and R. Loughman. 2003. First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australasian Plant Pathology 32(2): 321-322. doi: 10.1071/AP03023

Wellings, C. R. 2007. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Australian Journal of Agricultural Research 58: 567-575. doi: 10.1071/AR07130

Wu, J. H.; Q. L. Wang; X. M. Chen; M. J. Wang; J. M. Mu; X. N. Lv; L. L. Huang; D. J. Han and Z. S. Kang. 2016. Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Canadian Journal of Plant Pathology 38(3): 317-324. doi: 10.1080/07060661.2016.1206039

Wu, J.; Q. Wang; S. Liu; S. Huang; J. Mu; Q. Zeng; L. Huang; D. Han and Z. Kang. 2017a. Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays. Frontiers in Plant Science 8: 653. doi: 10.3389/fpls.2017.00653

Wu, J.; Q. Wang; L. Xu; X. Chen; M. B. Li; J. Mu; Q. Zeng; L. Huang; D. Han and Z. Kang. 2017b. Combining SNP genotyping array with bulked segregant analysis to map a gene controlling adult-plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology (in press). doi: 10.1094/PHYTO-04-17-0153-R

Xia, C. J.; M. N. Wang; A. M. Wan; D. A. Jiwan; D. R. See and X. M. Chen. 2016. Association Analysis of SP-SNPs and Avirulence Genes in Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. American Journal of Plant Sciences 7: 126-137. doi: 10.4236/ajps.2016.71014

Xiang, C.; J. Y. Feng; M. N. Wang; X. M. Chen; D. R. See; A. M. Wan and T. Wang. 2016. Molecular mapping of Yr76 for resistance to stripe rust in winter club wheat cultivar Tyee. Phytopathology 106: 1186-1193. doi: 10.1094/ PHYTO-01-16-0045-FI

Yang, Y.; F. Chen; D. Han; R. Ruan; B. Li; Y. Yu and C. Bi. 2017. Evaluation of resistance of current wheat cultivars and breeding lines to stripe rust from three Gorges reservoir area. Journal of General Plant Pathology 83(5): 283-290. doi: 10.1007/s10327-017-0729-4

Yao, Q.; M. M. He; L. Hou; J. H. Yan; Q. Y. Guo; J. X. Jing and Z. S. Kang. 2017. Genetic analysis and molecular mapping of stripe rust resistance genes in Chinese native wheat (Triticum aestivum) Lankao 5. Australasian Plant Pathology 46(3): 213-221. doi:10.1007/s13313-017-0478-z

Yu, M.; H. Zhang; X. L. Zhou; D. B. Hou and G. Y. Chen. 2017. Quantitative trait loci associated with agronomic traits and stripe rust in winter wheat mapping population using single nucleotide polymorphic markers. Molecular Breeding 37:105. doi: 10.1007/s11032-017-0704-y

Zeng, Q. D.; D. J. Han; Q. L. Wang; F. P. Yuan; J. H. Wu; L. Zhang; X. J. Wang; L. L. Huang; X. M. Chen and Z. S. Kang. 2014. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 196: 271-284. doi: 10.1007/s10681-013-1030-z

Zheng, W.; L. Huang; J. Huang; X. Wang; X. Chen; J. Zhao; J. Guo; H. Zhuang; C. Qiu; J. Liu; H. Liu; X. Huang; G. Pei; G. Zhan; C. Tang; Y. Cheng; M. Liu; J. Zhang; Z. Zhao; S. Zhang; Q. Han; D. Han; H. Zhang; J. Zhao; X. Gao; J. Wang; P. Ni; W. Dong; L. Yang; H. Yang; J-R. Xu; G. Zhang and Z. Kang. 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications 4: 2673. doi: 10.1038/ncomms3673

Zhu, X.; W. Liu; X. Chu; Q. Sun; C. Tan; Q. Yang; M. Jiao; J. Guo and Z. Kang. 2017. The transcription factor PstSTE12 is required for virulence of Puccinia striiformis f. sp. tritici. Molecular Plant Pathology (in press). doi:10.1111/mpp.12582


Enlaces refback

  • No hay ningún enlace refback.



Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Agronomía&Ambiente. Revista de la Facultad de Agronomía

ISSN 2344-9039 (en línea) - ISSN 2314-2243 (impreso)

Av. San Martín 4453 - C1417DSE - Buenos Aires - Argentina - Tel. +54-11-5287-0714